"example/vscode:/vscode.git/clone" did not exist on "17b72bd66f81acc823f0a2d4787c73de1102b935"
conv2d_bwd_data.cpp 12.8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
5
6
7
8
9
10
11
12
13
14
15
16
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_bwd_data.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_bwd_data.hpp"

using F16  = ck::half_t;
using F32  = float;
Chao Liu's avatar
Chao Liu committed
17
using BF16 = ck::bhalf_t;
18
using INT8 = int8_t;
Chao Liu's avatar
Chao Liu committed
19

20
21
22
namespace ck {
namespace tensor_operation {
namespace device {
23
namespace instance {
24
25
26
27
28

using DeviceConvBwdDataNoOpPtr =
    DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough>;
Chao Liu's avatar
Chao Liu committed
29

30
31
32
33
34
35
36
37
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
Chao Liu's avatar
Chao Liu committed
38

39
} // namespace instance
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
} // namespace device
} // namespace tensor_operation
} // namespace ck

using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

    for(int i = 0; i < ref.mData.size(); ++i)
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }

    return true;
}

int main(int argc, char* argv[])
{
    int data_type   = 0;
    int init_method = 0;

    // Conv shape
    ck::index_t N               = 128;
    ck::index_t K               = 256;
    ck::index_t C               = 192;
    ck::index_t Y               = 3;
    ck::index_t X               = 3;
    ck::index_t Hi              = 71;
    ck::index_t Wi              = 71;
    ck::index_t conv_stride_h   = 2;
    ck::index_t conv_stride_w   = 2;
    ck::index_t conv_dilation_h = 1;
    ck::index_t conv_dilation_w = 1;
    ck::index_t in_left_pad_h   = 1;
    ck::index_t in_left_pad_w   = 1;
    ck::index_t in_right_pad_h  = 1;
    ck::index_t in_right_pad_w  = 1;

Chao Liu's avatar
Chao Liu committed
87
88
89
90
91
92
    if(argc == 1)
    {
        data_type   = 1;
        init_method = 1;
    }
    else if(argc == 3)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);
    }
    else if(argc == 18)
    {
        data_type   = std::stoi(argv[1]);
        init_method = std::stoi(argv[2]);

        N               = std::stoi(argv[3]);
        K               = std::stoi(argv[4]);
        C               = std::stoi(argv[5]);
        Y               = std::stoi(argv[6]);
        X               = std::stoi(argv[7]);
        Hi              = std::stoi(argv[8]);
        Wi              = std::stoi(argv[9]);
        conv_stride_h   = std::stoi(argv[10]);
        conv_stride_w   = std::stoi(argv[11]);
        conv_dilation_h = std::stoi(argv[12]);
        conv_dilation_w = std::stoi(argv[13]);
        in_left_pad_h   = std::stoi(argv[14]);
        in_left_pad_w   = std::stoi(argv[15]);
        in_right_pad_h  = std::stoi(argv[16]);
        in_right_pad_w  = std::stoi(argv[17]);
    }
    else
    {
Chao Liu's avatar
Chao Liu committed
120
121
122
        printf("arg1: data type (0=fp32, 1=fp16, 2= bfp16, 3= int8_t )\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3 to 17: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
123
124
125
126
               "RightPx\n");
        exit(1);
    }

127
    auto Run = [&](auto input_type, auto wei_type, auto out_type, auto acc_type) {
128
129
130
        using InDataType  = decltype(input_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);
131
        using AccDataType = decltype(acc_type);
132
133
134
135
136

        using ReferenceConvBwdInstance =
            ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
                                                             WeiDataType,
                                                             OutDataType,
137
                                                             AccDataType,
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
                                                             InElementOp,
                                                             WeiElementOp,
                                                             OutElementOp>;

        const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
        const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;

        const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
        const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

        const std::vector<ck::index_t> input_spatial_lengths{{Hi, Wi}};
        const std::vector<ck::index_t> filter_spatial_lengths{{Y, X}};
        const std::vector<ck::index_t> output_spatial_lengths{{Ho, Wo}};
        const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
        const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
        const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
        const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};

        auto f_host_tensor_descriptor =
            [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W) {
                return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                            std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
            };

        Tensor<OutDataType> out_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo));
        Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X));
        Tensor<InDataType> in_n_c_hi_wi_host_result(f_host_tensor_descriptor(N, C, Hi, Wi));
        Tensor<InDataType> in_n_c_hi_wi_device_result(f_host_tensor_descriptor(N, C, Hi, Wi));

        std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi_host_result.mDesc << std::endl;
        std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
        std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;

        switch(init_method)
        {
        case 0: break;
        case 1:
            out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
            break;
        default:
            out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
            wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
        }

        DeviceMem in_device_buf(sizeof(InDataType) *
                                in_n_c_hi_wi_device_result.mDesc.GetElementSpace());
        DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
        DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());

        out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
        wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
190
191
        // reset input to zero
        in_n_c_hi_wi_device_result.GenerateTensorValue(GeneratorTensor_1<InDataType>{0});
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        in_device_buf.ToDevice(in_n_c_hi_wi_device_result.mData.data());

        // get host result
        {
            auto ref_conv    = ReferenceConvBwdInstance{};
            auto ref_invoker = ref_conv.MakeInvoker();

            auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi_host_result,
                                                      wei_k_c_y_x,
                                                      out_n_k_ho_wo,
                                                      conv_filter_strides,
                                                      conv_filter_dilations,
                                                      input_left_pads,
                                                      input_right_pads,
                                                      InElementOp{},
                                                      WeiElementOp{},
                                                      OutElementOp{});
            ref_invoker.Run(ref_argument);
        }

        using PassThrough              = ck::tensor_operation::element_wise::PassThrough;
        using DeviceConvBwdDataNoOpPtr = ck::tensor_operation::device::
            DeviceConvBwdDataPtr<PassThrough, PassThrough, PassThrough>;

        // add device Conv instances
        std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;

        if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
                     ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
        {
223
            ck::tensor_operation::device::instance::
224
225
226
227
228
229
                add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
        }
        else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::half_t> &&
                          ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
                          ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
        {
230
            ck::tensor_operation::device::instance::
231
232
                add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
        }
233
234
235
        else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::bhalf_t> &&
                          ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::bhalf_t> &&
                          ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::bhalf_t>)
236
        {
237
            ck::tensor_operation::device::instance::
238
239
240
241
242
243
                add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
        }
        else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, int8_t> &&
                          ck::is_same_v<ck::remove_cv_t<WeiDataType>, int8_t> &&
                          ck::is_same_v<ck::remove_cv_t<OutDataType>, int8_t>)
        {
244
            ck::tensor_operation::device::instance::
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
                add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
        }

        if(conv_ptrs.size() <= 0)
        {
            throw std::runtime_error("wrong! no device Conv instance found");
        }

        // profile device Conv instances
        bool success = true;
        for(auto& conv_ptr : conv_ptrs)
        {
            auto argument_ptr = conv_ptr->MakeArgumentPointer(
                static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                N,
                K,
                C,
                input_spatial_lengths,
                filter_spatial_lengths,
                output_spatial_lengths,
                conv_filter_strides,
                conv_filter_dilations,
                input_left_pads,
                input_right_pads,
                InElementOp{},
                WeiElementOp{},
                OutElementOp{});

            if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
            {
                auto invoker_ptr = conv_ptr->MakeInvokerPointer();
                invoker_ptr->Run(argument_ptr.get(), 1);

                in_device_buf.FromDevice(in_n_c_hi_wi_device_result.mData.data());

                if(!check_out(in_n_c_hi_wi_host_result, in_n_c_hi_wi_device_result))
                {
                    std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;
                    success = false;
                }
                else
                {
                    std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
                }
            }
            else
            {
                std::cout << "Not support Info: " << conv_ptr->GetTypeString() << std::endl;
            }
        }

        if(success)
        {
            std::cout << "test conv2d bwd : Pass" << std::endl;
301
            return 0;
302
303
304
305
        }
        else
        {
            std::cout << "test conv2d bwd: Fail " << std::endl;
306
            return -1;
307
308
309
310
311
        }
    };

    if(data_type == 0)
    {
312
        return Run(F32(), F32(), F32(), F32());
313
314
315
    }
    else if(data_type == 1)
    {
316
        return Run(F16(), F16(), F16(), F32());
317
318
319
    }
    else if(data_type == 2)
    {
320
        return Run(BF16(), BF16(), BF16(), F32());
321
322
323
    }
    else if(data_type == 3)
    {
324
        return Run(INT8(), INT8(), INT8(), int());
325
326
327
328
329
330
    }
    else
    {
        return 1;
    }
}