profile_gemm_impl.hpp 14.4 KB
Newer Older
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2
3
4
5
6
7
8
9
10
11
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm.hpp"
#include "reference_gemm.hpp"
12
13
14
15
16
17

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

ltqin's avatar
ltqin committed
18
19
20
21
22
23
24
25
26
27
using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;

void add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

Chao Liu's avatar
Chao Liu committed
28
29
30
31
32
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

ltqin's avatar
ltqin committed
33
34
35
36
37
38
39
40
41
void add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
Chao Liu's avatar
Chao Liu committed
57
58
59
60
61
62
63
64
65
void profile_gemm_impl(int do_verification,
                       int init_method,
                       bool do_log,
                       int nrepeat,
                       int M,
                       int N,
                       int K,
                       int StrideA,
                       int StrideB,
ltqin's avatar
ltqin committed
66
67
                       int StrideC,
                       int KBatch = 1)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

ltqin's avatar
ltqin committed
92
    std::size_t num_thread = std::thread::hardware_concurrency();
93
94
95
96
    switch(init_method)
    {
    case 0: break;
    case 1:
ltqin's avatar
ltqin committed
97
98
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
99
100
        break;
    default:
ltqin's avatar
ltqin committed
101
102
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
103
    }
Chao Liu's avatar
Chao Liu committed
104

ltqin's avatar
ltqin committed
105
106
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
107

Chao Liu's avatar
Chao Liu committed
108
109
110
111
112
113
114
115
    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

116
117
    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
118
119
120
121
122
123
124
125
126
127
        using ReferenceGemmInstance = ck::tensor_operation::host::
            ReferenceGemm<ADataType, BDataType, CDataType, AElementOp, BElementOp, CElementOp>;

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
128
129
130
131
132
133
134
135
136
137
138
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
Chao Liu's avatar
Chao Liu committed
139
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmNoOpPtr> gemm_ptrs;
140

ltqin's avatar
ltqin committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
                 is_same<CDataType, float>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
            }
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
            }
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {

                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
            }
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_gemm_instance::
                    add_device_gemm_xdl_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
            }
        }
    }
    else if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                      is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
Chao Liu's avatar
Chao Liu committed
215
216
217

            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
ltqin's avatar
ltqin committed
218
219
220
221
222
223
224
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
Chao Liu's avatar
Chao Liu committed
225
226
227

            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
ltqin's avatar
ltqin committed
228
229
230
231
232
233
234
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
Chao Liu's avatar
Chao Liu committed
235
236
237

            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
ltqin's avatar
ltqin committed
238
239
240
241
242
243
244
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
Chao Liu's avatar
Chao Liu committed
245
246
247

            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
ltqin's avatar
ltqin committed
248
249
        }
    }
250
251
252
253
254
255

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

Chao Liu's avatar
Chao Liu committed
256
    std::string best_gemm_name;
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
Chao Liu's avatar
Chao Liu committed
273
274
275
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
ltqin's avatar
ltqin committed
276
277
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          KBatch);
278
279
280
281
282

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
Chao Liu's avatar
Chao Liu committed
283
284
            std::string gemm_name = gemm_ptr->GetTypeString();

285
286
287
            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = std::size_t(2) * M * N * K;
Chao Liu's avatar
Chao Liu committed
288

289
290
291
292
293
294
295
296
            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
Chao Liu's avatar
Chao Liu committed
297
                      << " GB/s, " << gemm_name << std::endl;
298
299
300

            if(tflops > best_tflops)
            {
Chao Liu's avatar
Chao Liu committed
301
                best_gemm_name  = gemm_name;
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());

                check_error(c_m_n_host_result, c_m_n_device_result);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
Chao Liu's avatar
Chao Liu committed
326
            std::cout << "does not support this GEMM problem" << std::endl;
327
328
329
330
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
Chao Liu's avatar
Chao Liu committed
331
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
332
333
334
335
}

} // namespace profiler
} // namespace ck