conv_xdl.cpp 13.6 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_conv_fwd_xdl.hpp"
#include "device_conv_fwd_xdl_nhwc_kyxc_nhwk.hpp"

struct PassThrough
{
    template <typename T>
    __host__ __device__ constexpr T operator()(T v) const
    {
        return v;
    }
};

struct Relu
{
    template <typename T>
    __host__ __device__ constexpr T operator()(T v) const
    {
        T tmp = 0.1 * v;
        return tmp > 0 ? tmp : 0;
    }
};

using InDataType  = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using InLayout  = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;

using InElementOp  = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = Relu;

using DeviceConvFwdInstance =
    // clang-format off
54
55
56
57
58
//############################################|    NDim|     InData|     WeiData|     OutData|     AccData|       In|       Wei|       Out|          In|         Wei|           Out| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer|  BBlockTransfer|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
//############################################| Spatial|       Type|        Type|        Type|        Type|   Layout|    Layout|    Layout| Elementwise| Elementwise|   Elementwise|  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar|     ThreadSlice|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| SrcDstVectorDim|       DstScalar| AddExtraM| AddExtraN|
//############################################|        |           |            |            |            |         |          |          |   Operation|   Operation|     Operation|      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|                |       PerVector|          |          |
//############################################|        |           |            |            |            |         |          |          |            |            |              |      |      |      |      |   |     |     |     |     |                |                |               |               |               |               |               |                |                |               |               |              |               |               |                |                |          |          |
ck::tensor_operation::device::DeviceConvFwdXdl<       2, InDataType, WeiDataType, OutDataType, AccDataType, InLayout, WeiLayout, OutLayout, InElementOp, WeiElementOp, OutElementOp,   256,   128,   256,     4,  8,   32,   32,    2,    4,      S<1, 2, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,      S<1, 4, 8>,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,               7,               1,      true,      true>;
Chao Liu's avatar
Chao Liu committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// clang-format on

template <typename TIn,
          typename TWei,
          typename TOut,
          typename InElementOp,
          typename WeiElementOp,
          typename OutElementOp>
void host_verify(const Tensor<TIn>& in,
                 const Tensor<TWei>& wei,
                 Tensor<TOut>& out,
                 const std::vector<ck::index_t>& conv_strides,
                 const std::vector<ck::index_t>& conv_dilations,
                 const std::vector<ck::index_t>& in_left_pads,
                 const std::vector<ck::index_t>&,
                 const InElementOp& in_element_op,
                 const WeiElementOp& wei_element_op,
                 const OutElementOp& out_element_op)
{
    auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho * conv_strides[0] + y * conv_dilations[0] - in_left_pads[0];
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo * conv_strides[1] + x * conv_dilations[1] - in_left_pads[1];
                    if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in.mDesc.GetLengths()[3])
                    {
                        v += in_element_op(static_cast<const double>(in(n, c, hi, wi))) *
                             wei_element_op(static_cast<const double>(wei(k, c, y, x)));
                    }
                }
            }
        }
        out(n, k, ho, wo) = out_element_op(v);
    };

    make_ParallelTensorFunctor(f_nchw,
                               out.mDesc.GetLengths()[0],
                               out.mDesc.GetLengths()[1],
                               out.mDesc.GetLengths()[2],
                               out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
}

int main(int argc, char* argv[])
{
Chao Liu's avatar
Chao Liu committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;

    // Conv shape
    ck::index_t N               = 128;
    ck::index_t K               = 256;
    ck::index_t C               = 192;
    ck::index_t Y               = 3;
    ck::index_t X               = 3;
    ck::index_t Hi              = 71;
    ck::index_t Wi              = 71;
    ck::index_t conv_stride_h   = 2;
    ck::index_t conv_stride_w   = 2;
    ck::index_t conv_dilation_h = 1;
    ck::index_t conv_dilation_w = 1;
    ck::index_t in_left_pad_h   = 1;
    ck::index_t in_left_pad_w   = 1;
    ck::index_t in_right_pad_h  = 1;
    ck::index_t in_right_pad_w  = 1;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
    }
    else if(argc == 19)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);

        N               = std::stoi(argv[4]);
        K               = std::stoi(argv[5]);
        C               = std::stoi(argv[6]);
        Y               = std::stoi(argv[7]);
        X               = std::stoi(argv[8]);
        Hi              = std::stoi(argv[9]);
        Wi              = std::stoi(argv[10]);
        conv_stride_h   = std::stoi(argv[11]);
        conv_stride_w   = std::stoi(argv[12]);
        conv_dilation_h = std::stoi(argv[13]);
        conv_dilation_w = std::stoi(argv[14]);
        in_left_pad_h   = std::stoi(argv[15]);
        in_left_pad_w   = std::stoi(argv[16]);
        in_right_pad_h  = std::stoi(argv[17]);
        in_right_pad_w  = std::stoi(argv[18]);
    }
    else
Chao Liu's avatar
Chao Liu committed
159
160
161
162
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
Chao Liu's avatar
Chao Liu committed
163
164
        printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
Chao Liu's avatar
Chao Liu committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        exit(0);
    }

    const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
    const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;

    const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
    const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

    const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
    const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
    const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
    const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};

    // tensor layout
    auto f_host_tensor_descriptor = [](std::size_t N_,
                                       std::size_t C_,
                                       std::size_t H,
                                       std::size_t W,
                                       auto layout) {
        if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
                     ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
                     ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                        std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
        }
        else if constexpr(ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::NHWC>::value ||
                          ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::KYXC>::value ||
                          ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::NHWK>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                        std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
        }
    };

    Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
    Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
    Tensor<OutDataType> out_n_k_ho_wo_host_result(
        f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
    Tensor<OutDataType> out_n_k_ho_wo_device_result(
        f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
    std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
    std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
        wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
        break;
    default:
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
        wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
    }

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) *
                             out_n_k_ho_wo_device_result.mDesc.GetElementSpace());

    in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
    wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());

    // do GEMM
    auto conv     = DeviceConvFwdInstance{};
    auto invoker  = conv.MakeInvoker();
    auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                      static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                                      static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                                      N,
                                      K,
                                      C,
                                      std::vector<ck::index_t>{{Hi, Wi}},
                                      std::vector<ck::index_t>{{Y, X}},
                                      std::vector<ck::index_t>{{Ho, Wo}},
                                      conv_filter_strides,
                                      conv_filter_dilations,
                                      input_left_pads,
                                      input_right_pads,
                                      InElementOp{},
                                      WeiElementOp{},
                                      OutElementOp{});

    if(!conv.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_conv with the specified compilation parameters does "
            "not support this Conv problem");
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;

    std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
                            sizeof(WeiDataType) * (K * C * Y * X) +
                            sizeof(OutDataType) * (N * K * Ho * Wo);

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    if(do_verification)
    {
        host_verify(in_n_c_hi_wi,
                    wei_k_c_y_x,
                    out_n_k_ho_wo_host_result,
                    conv_filter_strides,
                    conv_filter_dilations,
                    input_left_pads,
                    input_right_pads,
                    InElementOp{},
                    WeiElementOp{},
                    OutElementOp{});

        out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());

        check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);
    }
}