client_app_impl.hpp 5.93 KB
Newer Older
Jehandad Khan's avatar
Jehandad Khan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "tensor_layout.hpp"
#include "device_conv_fwd.hpp"
#include "element_wise_operation.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_fwd_instance {

using DeviceConvFwdNoOpPtr = DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
                                              ck::tensor_operation::element_wise::PassThrough,
                                              ck::tensor_operation::element_wise::PassThrough>;

void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);

void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);

void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvFwdNoOpPtr>&);

void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);

void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace device_conv2d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace app {

template <int NDimSpatial,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout>
void profile_conv_fwd_impl(int do_verification,
                           int init_method,
                           bool do_log,
                           int nrepeat,
                           ck::index_t N,
                           ck::index_t K,
                           ck::index_t C,
                           std::vector<ck::index_t> input_spatial_lengths,
                           std::vector<ck::index_t> filter_spatial_lengths,
                           std::vector<ck::index_t> output_spatial_lengths,
                           std::vector<ck::index_t> conv_filter_strides,
                           std::vector<ck::index_t> conv_filter_dilations,
                           std::vector<ck::index_t> input_left_pads,
                           std::vector<ck::index_t> input_right_pads)
{
    const ck::index_t Y = filter_spatial_lengths[0];
    const ck::index_t X = filter_spatial_lengths[1];

    const ck::index_t Hi = input_spatial_lengths[0];
    const ck::index_t Wi = input_spatial_lengths[1];

    const ck::index_t Ho = output_spatial_lengths[0];
    const ck::index_t Wo = output_spatial_lengths[1];
    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

    const auto in_sz = 1000;
    const auto wei_sz = 1000;
    const auto out_sz = 1000;

    DeviceMem in_device_buf(sizeof(InDataType) * in_sz);
    DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_sz);
    DeviceMem out_device_buf(sizeof(OutDataType) * out_sz);
    // data is already on device!
    // in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
    // wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());

    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    using DeviceConvFwdNoOpPtr =
        ck::tensor_operation::device::DeviceConvFwdPtr<PassThrough, PassThrough, PassThrough>;

    // add device Conv instances
    std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;

        ck::tensor_operation::device::device_conv2d_fwd_instance::
            add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
    if(conv_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device Conv instance found");
    }

    std::string best_conv_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
    for(auto& conv_ptr : conv_ptrs)
    {
        auto argument_ptr = conv_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            N,
            K,
            C,
            input_spatial_lengths,
            filter_spatial_lengths,
            output_spatial_lengths,
            conv_filter_strides,
            conv_filter_dilations,
            input_left_pads,
            input_right_pads,
            in_element_op,
            wei_element_op,
            out_element_op);

        auto invoker_ptr = conv_ptr->MakeInvokerPointer();

        if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string conv_name = conv_ptr->GetTypeString();

            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;

            std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
                                    sizeof(WeiDataType) * (K * C * Y * X) +
                                    sizeof(OutDataType) * (N * K * Ho * Wo);

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << conv_name << std::endl;

            if(tflops > best_tflops)
            {
                best_conv_name  = conv_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
}

} // namespace profiler
} // namespace ck