profile_gemm_reduce_impl.hpp 15.5 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

Chao Liu's avatar
Chao Liu committed
4
#pragma once
Chao Liu's avatar
Chao Liu committed
5
6
7
8
9
10
11
12
13
14
15
16
17

#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
Chao Liu's avatar
Chao Liu committed
18
19
20
21

namespace ck {
namespace tensor_operation {
namespace device {
22
namespace instance {
Chao Liu's avatar
Chao Liu committed
23

24
25
using F32                 = float;
using F16                 = ck::half_t;
rocking's avatar
rocking committed
26
using RPtrsGlobal         = ck::Tuple<F32*, F32*>;
27
28
29
30
31
32
33
using Div                 = ck::tensor_operation::element_wise::UnaryDivide;
using Identity            = ck::tensor_operation::element_wise::PassThrough;
using Square              = ck::tensor_operation::element_wise::UnarySquare;
using ReduceInElementOps  = ck::Tuple<Identity, Square>;
using ReduceOutElementOps = ck::Tuple<Div, Div>;

using DeviceGemmReduceNoOpPtr =
rocking's avatar
rocking committed
34
    ck::tensor_operation::device::DeviceGemmReducePtr<0, RPtrsGlobal::Size()>;
Chao Liu's avatar
Chao Liu committed
35
36
37
38
39
40
41
42
43
44
45
46
47

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

48
} // namespace instance
Chao Liu's avatar
Chao Liu committed
49
50
51
52
53
54
55
56
57
58
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
rocking's avatar
rocking committed
59
          typename RDataType,
Chao Liu's avatar
Chao Liu committed
60
61
62
63
64
65
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_gemm_reduce_impl(int do_verification,
                              int init_method,
                              bool do_log,
JD's avatar
JD committed
66
                              bool time_kernel,
Chao Liu's avatar
Chao Liu committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
                              int M,
                              int N,
                              int K,
                              int StrideA,
                              int StrideB,
                              int StrideC)
{
    bool pass = true;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
rocking's avatar
rocking committed
94
    Tensor<RDataType> reduce0_m_host_result(
Chao Liu's avatar
Chao Liu committed
95
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
rocking's avatar
rocking committed
96
    Tensor<RDataType> reduce1_m_host_result(
Chao Liu's avatar
Chao Liu committed
97
98
99
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
rocking's avatar
rocking committed
100
    Tensor<RDataType> reduce0_m_device_result(
Chao Liu's avatar
Chao Liu committed
101
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
rocking's avatar
rocking committed
102
    Tensor<RDataType> reduce1_m_device_result(
Chao Liu's avatar
Chao Liu committed
103
104
105
106
107
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
108
109
    std::cout << "reduce0_m: " << reduce0_m_host_result.mDesc << std::endl;
    std::cout << "reduce1_m: " << reduce1_m_host_result.mDesc << std::endl;
Chao Liu's avatar
Chao Liu committed
110

111
    std::size_t num_thread = 1;
Chao Liu's avatar
Chao Liu committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

126
127
128
    using AElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp            = ck::tensor_operation::element_wise::PassThrough;
129
130
    using ReduceOp0             = ck::reduce::Add;
    using ReduceOp1             = ck::reduce::Add;
131
132
    using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
    using UnarySquareElementOp  = ck::tensor_operation::element_wise::UnarySquare;
133
134
135
136
137
138
    using UnaryDivElementOp     = ck::tensor_operation::element_wise::UnaryDivide;

    auto a_element_op                     = AElementOp{};
    auto b_element_op                     = BElementOp{};
    auto c_element_op                     = CElementOp{};
    std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};
rocking5566's avatar
rocking5566 committed
139

140
141
    const auto reduce0_op = ReduceOp0{};
    const auto reduce1_op = ReduceOp1{};
rocking5566's avatar
rocking5566 committed
142

143
144
145
146
147
    auto passthrough                            = UnaryIdenticElementOp{};
    auto square                                 = UnarySquareElementOp{};
    auto div                                    = UnaryDivElementOp{N};
    std::array<void*, 2> reduce_in_element_ops  = {&passthrough, &square};
    std::array<void*, 2> reduce_out_element_ops = {&div, &div};
Chao Liu's avatar
Chao Liu committed
148
149
150

    if(do_verification)
    {
151
152
153
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
rocking's avatar
rocking committed
154
                                                                                RDataType,
155
156
157
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;
Chao Liu's avatar
Chao Liu committed
158

rocking's avatar
rocking committed
159
        using RAccDataType = RDataType;
160

Chao Liu's avatar
Chao Liu committed
161
162
163
164
165
166
167
168
169
170
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int m = 0; m < M; ++m)
        {
rocking's avatar
rocking committed
171
172
            auto reduce0_acc = reduce0_op.GetIdentityValue<RAccDataType>();
            auto reduce1_acc = reduce1_op.GetIdentityValue<RAccDataType>();
Chao Liu's avatar
Chao Liu committed
173
174
175

            for(int n = 0; n < N; ++n)
            {
rocking's avatar
rocking committed
176
177
                RAccDataType d0_val = ck::type_convert<RAccDataType>(c_m_n_host_result(m, n));
                RAccDataType d1_val;
178

179
180
181
                square(d1_val, d0_val);
                reduce0_op(reduce0_acc, d0_val);
                reduce1_op(reduce1_acc, d1_val);
Chao Liu's avatar
Chao Liu committed
182
183
            }

184
185
            div(reduce0_acc, reduce0_acc);
            div(reduce1_acc, reduce1_acc);
rocking's avatar
rocking committed
186
187
            reduce0_m_host_result(m) = ck::type_convert<RDataType>(reduce0_acc);
            reduce1_m_host_result(m) = ck::type_convert<RDataType>(reduce1_acc);
Chao Liu's avatar
Chao Liu committed
188
189
190
191
192
193
        }
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
rocking's avatar
rocking committed
194
    DeviceMem reduce0_device_buf(sizeof(RDataType) *
195
                                 reduce0_m_device_result.mDesc.GetElementSpace());
rocking's avatar
rocking committed
196
    DeviceMem reduce1_device_buf(sizeof(RDataType) *
197
                                 reduce1_m_device_result.mDesc.GetElementSpace());
Chao Liu's avatar
Chao Liu committed
198

199
200
    std::array<void*, 2> p_reduces = {reduce0_device_buf.GetDeviceBuffer(),
                                      reduce1_device_buf.GetDeviceBuffer()};
rocking5566's avatar
rocking5566 committed
201

Chao Liu's avatar
Chao Liu committed
202
203
204
205
    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

    // add device GEMM instances
206
    std::vector<ck::tensor_operation::device::instance::DeviceGemmReduceNoOpPtr> gemm_ptrs;
Chao Liu's avatar
Chao Liu committed
207
208
209
210
211
212
213
214

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
215
            ck::tensor_operation::device::instance::
Chao Liu's avatar
Chao Liu committed
216
217
218
219
220
221
222
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
223
            ck::tensor_operation::device::instance::
Chao Liu's avatar
Chao Liu committed
224
225
226
227
228
229
230
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
231
            ck::tensor_operation::device::instance::
Chao Liu's avatar
Chao Liu committed
232
233
234
235
236
237
238
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
239
            ck::tensor_operation::device::instance::
Chao Liu's avatar
Chao Liu committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        auto argument_ptr = gemm_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
                                                          b_device_buf.GetDeviceBuffer(),
                                                          nullptr,
                                                          {},
                                                          c_device_buf.GetDeviceBuffer(),
                                                          p_reduces,
                                                          M,
                                                          N,
                                                          K,
                                                          StrideA,
                                                          StrideB,
                                                          StrideC,
                                                          {},
                                                          gemm_element_ops,
                                                          {},
                                                          reduce_in_element_ops,
                                                          reduce_out_element_ops);
Chao Liu's avatar
Chao Liu committed
275
276
277
278
279

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
280
            // init DO, D1 to 0
281
282
            reduce0_device_buf.SetZero();
            reduce1_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
283

JD's avatar
JD committed
284
285
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
Chao Liu's avatar
Chao Liu committed
286
287
288
289
290

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop = std::size_t(2) * M * N * K;

JD's avatar
JD committed
291
            std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
Chao Liu's avatar
Chao Liu committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
                                    sizeof(CDataType) * M * N + sizeof(CDataType) * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());
312
313
                reduce0_device_buf.FromDevice(reduce0_m_device_result.mData.data());
                reduce1_device_buf.FromDevice(reduce1_m_device_result.mData.data());
Chao Liu's avatar
Chao Liu committed
314

315
                ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
316
317
                ck::utils::check_err(reduce0_m_device_result.mData, reduce0_m_host_result.mData);
                ck::utils::check_err(reduce1_m_device_result.mData, reduce1_m_host_result.mData);
Chao Liu's avatar
Chao Liu committed
318
319
320
321
322
323
324
325
326

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
327
328
                    LogRangeAsType<float>(
                        std::cout << "d0_host: ", reduce0_m_host_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
329
                        << std::endl;
330
331
                    LogRangeAsType<float>(
                        std::cout << "d0_device: ", reduce0_m_device_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
332
                        << std::endl;
333
334
                    LogRangeAsType<float>(
                        std::cout << "d1_host: ", reduce1_m_host_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
335
                        << std::endl;
336
337
                    LogRangeAsType<float>(
                        std::cout << "d1_device: ", reduce1_m_device_result.mData, ",")
Chao Liu's avatar
Chao Liu committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck