profile_batchnorm_backward_impl.hpp 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>
#include <stdexcept>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_backward.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward.hpp"

namespace ck {
namespace profiler {

template <typename XDataType,
          typename DxDataType,
          typename DyDataType,
          typename AccDataType,
          typename ScaleDataType,
          typename DscaleDbiasDataType,
          typename MeanVarDataType,
          index_t Rank,
          index_t NumBatchNormReduceDim>
bool profile_batchnorm_backward_impl(bool do_verification,
                                     int init_method,
                                     bool do_dumpout,
                                     bool time_kernel,
                                     const std::vector<size_t> inOutLengths,
                                     const std::vector<int> reduceDims,
                                     bool haveSavedMeanInvVar,
                                     double epsilon)
{
    if(inOutLengths.size() != Rank || reduceDims.size() != NumBatchNormReduceDim)
    {
        throw std::runtime_error("Invalid tensor lengths or number of reduce dimensions!");
    };

    std::vector<size_t> scaleBiasMeanVarLengths;

    // used for calculating the effective transferred bytes by each operation
    size_t total_length;
    size_t invariant_length = 1;

    total_length =
        std::accumulate(inOutLengths.begin(), inOutLengths.end(), 1, std::multiplies<size_t>{});

    if(std::any_of(reduceDims.begin(), reduceDims.end(), [](int d) { return d < 0 || d >= Rank; }))
        throw std::runtime_error("Invalid reduce dimensions!");

    for(int dim = 0; dim < Rank; dim++)
    {
        if(std::none_of(reduceDims.begin(), reduceDims.end(), [&](int d) { return dim == d; }))
        {
            scaleBiasMeanVarLengths.push_back(inOutLengths[dim]);
            invariant_length *= inOutLengths[dim];
        };
    }

    // input data of the batchnorm backward algorithm
    Tensor<XDataType> x(inOutLengths);
    Tensor<DyDataType> dy(inOutLengths);
    Tensor<ScaleDataType> bnScale(scaleBiasMeanVarLengths);

    Tensor<MeanVarDataType> savedMean(scaleBiasMeanVarLengths);
    Tensor<MeanVarDataType> savedInvVar(scaleBiasMeanVarLengths);
    // savedVariance is only used for initializing savedInvVar
    Tensor<MeanVarDataType> savedVariance(scaleBiasMeanVarLengths);

    // output data of the batchnorm backward algorithm
    Tensor<DxDataType> dx_ref(inOutLengths);
    Tensor<DxDataType> dx(inOutLengths);

    Tensor<DscaleDbiasDataType> dscale(scaleBiasMeanVarLengths);
    Tensor<DscaleDbiasDataType> dbias(scaleBiasMeanVarLengths);

    Tensor<DscaleDbiasDataType> dscale_ref(scaleBiasMeanVarLengths);
    Tensor<DscaleDbiasDataType> dbias_ref(scaleBiasMeanVarLengths);

    auto inOutStrides            = x.mDesc.GetStrides();
    auto scaleBiasMeanVarStrides = bnScale.mDesc.GetStrides();

    std::size_t num_thread = std::thread::hardware_concurrency();

    if(haveSavedMeanInvVar)
    {
        const float x_mean       = 0.0f;
        const float x_stddev     = 1.0f;
        const float noise_stddev = 0.0001f;

        // input data in normal distribution
        x.GenerateTensorValue(GeneratorTensor_4<XDataType>{x_mean, x_stddev}, num_thread);

        // initialize the savedMean to be values with tiny variation to the mean of the x values
        savedMean.GenerateTensorValue(GeneratorTensor_4<MeanVarDataType>{x_mean, noise_stddev},
                                      num_thread);

        // initialize the variance to be values with tiny variation to the variance of the x values
        savedVariance.GenerateTensorValue(
            GeneratorTensor_4<MeanVarDataType>{x_stddev * x_stddev, noise_stddev}, num_thread);

        auto it_src       = savedVariance.mData.begin();
        auto it_dst       = savedInvVar.mData.begin();
        float tmp_epsilon = std::numeric_limits<float>::epsilon();

        while(it_src != savedVariance.mData.end())
        {
            *it_dst = type_convert<AccDataType>(
                1.0f / std::sqrtf(type_convert<float>(*it_src) + tmp_epsilon));

            it_src++;
            it_dst++;
        };
    }
    else
    {
        const float x_mean   = 0.0f;
        const float x_stddev = 1.0f;

        // input data in normal distribution
        x.GenerateTensorValue(GeneratorTensor_4<XDataType>{x_mean, x_stddev}, num_thread);
    };

    if(do_verification)
    {
        switch(init_method)
        {
        case 0:
            dy.GenerateTensorValue(GeneratorTensor_0<DyDataType>{}, num_thread);
            bnScale.GenerateTensorValue(GeneratorTensor_0<ScaleDataType>{}, num_thread);
            break;
        case 1:
            dy.GenerateTensorValue(GeneratorTensor_1<DyDataType>{1}, num_thread);
            bnScale.GenerateTensorValue(GeneratorTensor_1<ScaleDataType>{1}, num_thread);
            break;
        case 2:
            dy.GenerateTensorValue(GeneratorTensor_2<DyDataType>{-2, 2}, num_thread);
            bnScale.GenerateTensorValue(GeneratorTensor_2<ScaleDataType>{-5, 5}, num_thread);
            break;
        default:
            dy.GenerateTensorValue(GeneratorTensor_3<DyDataType>{-0.2f, 0.2f}, num_thread);
            bnScale.GenerateTensorValue(GeneratorTensor_3<ScaleDataType>{-0.5f, 0.5f}, num_thread);
        }
    };

    // input data of the batchnorm backward algorithm
    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
    DeviceMem dy_dev(sizeof(DyDataType) * dy.mDesc.GetElementSpaceSize());

    DeviceMem bnScale_dev(sizeof(ScaleDataType) * bnScale.mDesc.GetElementSpaceSize());

    DeviceMem savedMean_dev(sizeof(MeanVarDataType) * savedMean.mDesc.GetElementSpaceSize());
    DeviceMem savedInvVar_dev(sizeof(MeanVarDataType) * savedInvVar.mDesc.GetElementSpaceSize());

    // output data of the batchnorm backward algorithm
    DeviceMem dx_dev(sizeof(DxDataType) * dx.mDesc.GetElementSpaceSize());

    DeviceMem dscale_dev(sizeof(DscaleDbiasDataType) * dscale.mDesc.GetElementSpaceSize());
    DeviceMem dbias_dev(sizeof(DscaleDbiasDataType) * dbias.mDesc.GetElementSpaceSize());

    x_dev.ToDevice(x.mData.data());
    dy_dev.ToDevice(dy.mData.data());
    bnScale_dev.ToDevice(bnScale.mData.data());

    if(haveSavedMeanInvVar)
    {
        savedMean_dev.ToDevice(savedMean.mData.data());
        savedInvVar_dev.ToDevice(savedInvVar.mData.data());
    };

    std::array<index_t, Rank> arrInOutLengths;
    std::array<index_t, Rank> arrInOutStrides;
    std::array<index_t, Rank - NumBatchNormReduceDim> arrScaleBiasMeanVarLengths;
    std::array<index_t, Rank - NumBatchNormReduceDim> arrScaleBiasMeanVarStrides;
    std::array<int, NumBatchNormReduceDim> arrReduceDims;

    std::copy(inOutLengths.begin(), inOutLengths.end(), arrInOutLengths.begin());
    std::copy(inOutStrides.begin(), inOutStrides.end(), arrInOutStrides.begin());
    std::copy(scaleBiasMeanVarLengths.begin(),
              scaleBiasMeanVarLengths.end(),
              arrScaleBiasMeanVarLengths.begin());
    std::copy(scaleBiasMeanVarStrides.begin(),
              scaleBiasMeanVarStrides.end(),
              arrScaleBiasMeanVarStrides.begin());

    std::copy(reduceDims.begin(), reduceDims.end(), arrReduceDims.begin());

    using PassThroughOp = ck::tensor_operation::element_wise::PassThrough;

    // add device batchnorm-backward instances
    using DeviceOp = ck::tensor_operation::device::DeviceBatchNormBwd<XDataType,
                                                                      DxDataType,
                                                                      DxDataType,
                                                                      AccDataType,
                                                                      ScaleDataType,
                                                                      DscaleDbiasDataType,
                                                                      MeanVarDataType,
                                                                      PassThroughOp,
                                                                      Rank,
                                                                      NumBatchNormReduceDim>;

    // get device op instances
    const auto instance_ptrs =
        ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
            DeviceOp>::GetInstances();

    std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;

    std::string best_instance_name;
    float best_avg_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;

    if(do_verification)
    {
        using ReferenceBatchNormBwdInstance =
            ck::tensor_operation::host::ReferenceBatchNormBwd<XDataType,
                                                              DxDataType,
                                                              DyDataType,
                                                              AccDataType,
                                                              ScaleDataType,
                                                              DscaleDbiasDataType,
                                                              MeanVarDataType,
                                                              PassThroughOp,
                                                              Rank,
                                                              NumBatchNormReduceDim>;

        auto batchNormBwd_ref = ReferenceBatchNormBwdInstance{};

        auto argument_ptr_ref = batchNormBwd_ref.MakeArgumentPointer(
            arrInOutLengths,
            arrInOutStrides,
            arrInOutStrides,
            arrInOutStrides,
            arrReduceDims,
            arrScaleBiasMeanVarLengths,
            arrScaleBiasMeanVarStrides,
            arrScaleBiasMeanVarStrides,
            arrScaleBiasMeanVarStrides,
            x.mData.data(),
            dy.mData.data(),
            bnScale.mData.data(),
            haveSavedMeanInvVar ? savedMean.mData.data() : nullptr,
            haveSavedMeanInvVar ? savedInvVar.mData.data() : nullptr,
            epsilon,
            PassThroughOp{},
            dx_ref.mData.data(),
            dscale_ref.mData.data(),
            dbias_ref.mData.data());

        if(!batchNormBwd_ref.IsSupportedArgument(argument_ptr_ref.get()))
        {
            std::cout << "The runtime parameters not supported by the reference instance, exiting!"
                      << std::endl;
            return (false);
        };

        auto invoker_ptr_ref = batchNormBwd_ref.MakeInvokerPointer();

        (void)invoker_ptr_ref->Run(argument_ptr_ref.get());
    }

    int num_kernel = 0;
    bool pass      = true;

    for(auto& inst_ptr : instance_ptrs)
    {
        auto argument_ptr = inst_ptr->MakeArgumentPointer(
            arrInOutLengths,
            arrInOutStrides,
            arrInOutStrides,
            arrInOutStrides,
            arrReduceDims,
            arrScaleBiasMeanVarLengths,
            arrScaleBiasMeanVarStrides,
            arrScaleBiasMeanVarStrides,
            arrScaleBiasMeanVarStrides,
            x_dev.GetDeviceBuffer(),
            dy_dev.GetDeviceBuffer(),
            bnScale_dev.GetDeviceBuffer(),
            haveSavedMeanInvVar ? savedMean_dev.GetDeviceBuffer() : nullptr,
            haveSavedMeanInvVar ? savedInvVar_dev.GetDeviceBuffer() : nullptr,
            epsilon,
            PassThroughOp{},
            dx_dev.GetDeviceBuffer(),
            dscale_dev.GetDeviceBuffer(),
            dbias_dev.GetDeviceBuffer());

        if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            num_kernel++;
        }
        else
        {
            if(time_kernel)
            {
                std::cout << inst_ptr->GetTypeString()
                          << " skipped due to unsupported argument: " << std::endl;
            }

            continue;
        };

        size_t workspace_sz = inst_ptr->GetWorkSpaceSize(argument_ptr.get());

        DeviceMem workspace_dev(workspace_sz);

        inst_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());

        auto invoker_ptr = inst_ptr->MakeInvokerPointer();

        float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

        size_t num_bytes = 0;

        // inputing of x, dy, scale, outputing of dx, dscale, dbias
        num_bytes += total_length * (sizeof(XDataType) + sizeof(DyDataType) + sizeof(DxDataType)) +
                     invariant_length * sizeof(DscaleDbiasDataType) * 2;

        // inputting of savedMean, savedInvVariance
        if(haveSavedMeanInvVar)
            num_bytes += invariant_length * sizeof(MeanVarDataType) * 2;

        float gb_per_sec = num_bytes / 1.E6 / avg_time;

        if(time_kernel)
            std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, "
                      << inst_ptr->GetTypeString() << std::endl;

        if(avg_time < best_avg_time)
        {
            best_instance_name = inst_ptr->GetTypeString();
            best_avg_time      = avg_time;
            best_gb_per_sec    = gb_per_sec;
        }

        if(do_verification)
        {
            using ck::utils::check_err;
            bool single_pass = true;

            dx_dev.FromDevice(dx.mData.data());
            dscale_dev.FromDevice(dscale.data());
            dbias_dev.FromDevice(dbias.data());

            // clang-format off
            single_pass = single_pass && ck::utils::check_err(dx.mData, dx_ref.mData, "dx result:", 5e-4, 5e-4);
            single_pass = single_pass && ck::utils::check_err(dscale.mData, dscale_ref.mData, "dScale result:", 3e-3, 3e-3);
            single_pass = single_pass && ck::utils::check_err(dbias.mData, dbias_ref.mData, "dBias result:", 3e-3, 3e-3);
            // clang-format on

            pass = pass && single_pass;
        };

        if(do_dumpout)
        {
            using ck::host_common::dumpBufferToFile;

            // clang-format off
            dumpBufferToFile("dump_x.bin", x.mData.data(), x.mDesc.GetElementSize());
            dumpBufferToFile("dump_dy.bin", dy.mData.data(), dy.mDesc.GetElementSize());
            dumpBufferToFile("dump_dx.bin", dx.mData.data(), dx.mDesc.GetElementSize());
            dumpBufferToFile("dump_dx_ref.bin", dx_ref.mData.data(), dx_ref.mDesc.GetElementSize());
            dumpBufferToFile("dump_dscale.bin", dscale.mData.data(), dscale.mDesc.GetElementSize());
            dumpBufferToFile("dump_dscale_ref.bin", dscale_ref.mData.data(), dscale_ref.mDesc.GetElementSize());
            // clang-format off
        };
    }

    if(time_kernel)
    {
        std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
                  << best_instance_name << std::endl;
    }

    if(num_kernel == 0)
    {
        std::cout << "Error: No kernel is applicable" << std::endl;
        return false;
    }

    return pass;
}

} // namespace profiler
} // namespace ck