profile_grouped_conv_bwd_data.cpp 5.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "profiler/profile_grouped_conv_bwd_data_impl.hpp"
#include "profiler_operation_registry.hpp"

namespace {

enum struct ConvLayout
{
    GNHWC_GKYXC_GNHWK, // 0
    NHWGC_GKYXC_NHWGK, // 1
};

enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
};

#define OP_NAME "grouped_conv_bwd_data"
#define OP_DESC "Grouped Convolution Backward Data"

static void print_helper_msg()
{
    std::cout
        // clang-format off
        << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
        << "arg2: data type (0: Output fp32, Weight fp32, Input fp32\n"
        << "                 1: Output fp16, Weight fp16, Input fp16\n"
        << "                 2: Output bf16, Weight bf16, Input bf16\n"
        << "arg3: tensor layout (0: Output[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Input[G, N, Ho, Wo, K]\n"
        << "                     1: Output[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Input[N, Ho, Wo, G, K])\n"
        << "arg4: verification (0: no, 1: yes)\n"
        << "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
        << "arg6: print tensor value (0: no; 1: yes)\n"
        << "arg7: time kernel (0: no, 1: yes)\n"
        << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
    // clang-format on
}

} // namespace

int profile_grouped_conv_bwd_data(int argc, char* argv[])
{
    // 8 for control, 1 for num_dim_spatial
    if(argc < 9)
    {
        print_helper_msg();
        return 1;
    }

    const auto data_type       = static_cast<ConvDataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<ConvLayout>(std::stoi(argv[3]));
    const bool do_verification = std::stoi(argv[4]);
    const int init_method      = std::stoi(argv[5]);
    const bool do_log          = std::stoi(argv[6]);
    const bool time_kernel     = std::stoi(argv[7]);
    const int num_dim_spatial  = std::stoi(argv[8]);

    // 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
    if(argc != 8 + 1 + 4 + 6 * num_dim_spatial)
    {
        print_helper_msg();
        return 1;
    }

    const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 9, argv);

    using F32  = float;
    using F16  = ck::half_t;
    using BF16 = ck::bhalf_t;

    using GNHWC = ck::tensor_layout::convolution::GNHWC;
    using NHWGC = ck::tensor_layout::convolution::NHWGC;

    using GKYXC = ck::tensor_layout::convolution::GKYXC;

    using GNHWK = ck::tensor_layout::convolution::GNHWK;
    using NHWGK = ck::tensor_layout::convolution::NHWGK;

    constexpr auto I2 = ck::Number<2>{};

    auto profile = [&](auto num_dim_spatial_tmp,
                       auto out_layout,
                       auto wei_layout,
                       auto in_layout,
                       auto wei_type,
                       auto out_type,
                       auto in_type) {
        constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;

        using OutLayout = decltype(out_layout);
        using WeiLayout = decltype(wei_layout);
        using InLayout  = decltype(in_layout);

        using OutDataType = decltype(out_type);
        using WeiDataType = decltype(wei_type);
        using InDataType  = decltype(in_type);

        bool pass = ck::profiler::profile_grouped_conv_bwd_data_impl<NDimSpatial,
                                                                     OutLayout,
                                                                     WeiLayout,
                                                                     InLayout,
                                                                     OutDataType,
                                                                     WeiDataType,
                                                                     InDataType>(
            do_verification, init_method, do_log, time_kernel, params);

        return pass ? 0 : 1;
    };

    // GNHWC_GKYXC_GNHWK
    if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I2, GNHWK{}, GKYXC{}, GNHWC{}, BF16{}, BF16{}, BF16{});
        }
    }
    // NHWGC_GKYXC_NHWGK
    else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I2, NHWGK{}, GKYXC{}, NHWGC{}, BF16{}, BF16{}, BF16{});
        }
    }

    std::cout << "this data_type & layout is not implemented" << std::endl;

    return 1;
}

REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_conv_bwd_data);