main.cpp 7.78 KB
Newer Older
ltqin's avatar
ltqin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_instance.hpp"
#include "host_gemm.hpp"
#include "tensor_layout.hpp"
ltqin's avatar
ltqin committed
14
#include "device_gemm_splitk_xdl_instance.hpp"
ltqin's avatar
ltqin committed
15
16
17
18
19
20
21
22
23
24
25
26
27
#include "device_gemm_splitk_xdl.hpp"

enum GemmMatrixLayout
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
};
using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;
ltqin's avatar
ltqin committed
28
using GEMM_PTR = std::vector<DeviceGemmNoOpPtr>;
ltqin's avatar
ltqin committed
29

ltqin's avatar
ltqin committed
30
31
32
static std::vector<std::vector<bool>>& GetLayoutType()
{
    static std::vector<std::vector<bool>> LayOut = {{0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0}};
ltqin's avatar
ltqin committed
33
    return LayOut;
ltqin's avatar
ltqin committed
34
}
ltqin's avatar
ltqin committed
35
36
static void add_device_gemm_instance_mk_kn_mn(GEMM_PTR& gemm_ptrs)
{
ltqin's avatar
ltqin committed
37
    ck::tensor_operation::device::device_gemm_instance::add_device_splitk_gemm_instance<
ltqin's avatar
ltqin committed
38
39
40
41
42
43
44
45
46
        float,
        float,
        float,
        ck::tensor_layout::gemm::RowMajor,
        ck::tensor_layout::gemm::RowMajor,
        ck::tensor_layout::gemm::RowMajor>(gemm_ptrs);
}
static void add_device_gemm_instance_mk_nk_mn(GEMM_PTR& gemm_ptrs)
{
ltqin's avatar
ltqin committed
47
    ck::tensor_operation::device::device_gemm_instance::add_device_splitk_gemm_instance<
ltqin's avatar
ltqin committed
48
49
50
51
52
53
54
55
56
        float,
        float,
        float,
        ck::tensor_layout::gemm::RowMajor,
        ck::tensor_layout::gemm::ColumnMajor,
        ck::tensor_layout::gemm::RowMajor>(gemm_ptrs);
}
static void add_device_gemm_instance_km_kn_mn(GEMM_PTR& gemm_ptrs)
{
ltqin's avatar
ltqin committed
57
    ck::tensor_operation::device::device_gemm_instance::add_device_splitk_gemm_instance<
ltqin's avatar
ltqin committed
58
59
60
61
62
63
64
65
66
        float,
        float,
        float,
        ck::tensor_layout::gemm::ColumnMajor,
        ck::tensor_layout::gemm::RowMajor,
        ck::tensor_layout::gemm::RowMajor>(gemm_ptrs);
}
static void add_device_gemm_instance_km_nk_mn(GEMM_PTR& gemm_ptrs)
{
ltqin's avatar
ltqin committed
67
    ck::tensor_operation::device::device_gemm_instance::add_device_splitk_gemm_instance<
ltqin's avatar
ltqin committed
68
69
70
71
72
73
74
75
        float,
        float,
        float,
        ck::tensor_layout::gemm::ColumnMajor,
        ck::tensor_layout::gemm::ColumnMajor,
        ck::tensor_layout::gemm::RowMajor>(gemm_ptrs);
}

ltqin's avatar
ltqin committed
76
77
static auto& GetAddDeviceGemmInstance()
{
ltqin's avatar
ltqin committed
78
79
80
81
82
    static std::vector<void (*)(GEMM_PTR&)> AddDeviceGemmInstance = {
        add_device_gemm_instance_mk_kn_mn,
        add_device_gemm_instance_mk_nk_mn,
        add_device_gemm_instance_km_kn_mn,
        add_device_gemm_instance_km_nk_mn};
ltqin's avatar
ltqin committed
83
84
85
    return AddDeviceGemmInstance;
}

ltqin's avatar
ltqin committed
86
87
static void add_device_gemm_instance(GEMM_PTR& gemm_ptrs, int layout)
{
ltqin's avatar
ltqin committed
88
    GetAddDeviceGemmInstance()[layout](gemm_ptrs);
ltqin's avatar
ltqin committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
}

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

    for(int i = 0; i < ref.mData.size(); ++i)
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }

    return true;
}
int main(int argc, char* argv[])
{
ltqin's avatar
ltqin committed
109
    if(argc != 9)
ltqin's avatar
ltqin committed
110
111
112
113
114
    {
        printf("arg1: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
        printf("                     1: A[m, k] * B[n, k] = C[m, n];\n");
        printf("                     2: A[k, n] * B[k, n] = C[m, n];\n");
        printf("                     3: A[k, n] * B[n, k] = C[m, n])\n");
ltqin's avatar
ltqin committed
115
        printf("arg2 to 7: M, N, K, StrideA, StrideB, StrideC KBatch\n");
ltqin's avatar
ltqin committed
116
117
118
119
120
121
122
123
124
        return 1;
    }

    const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));

    const int M = std::stoi(argv[2]);
    const int N = std::stoi(argv[3]);
    const int K = std::stoi(argv[4]);

ltqin's avatar
ltqin committed
125
126
127
128
    const int StrideA = std::stoi(argv[5]);
    const int StrideB = std::stoi(argv[6]);
    const int StrideC = std::stoi(argv[7]);
    const int KBatch  = std::stoi(argv[8]);
ltqin's avatar
ltqin committed
129
130
131
132
133
134

    if(layout > 3 || layout < 0)
    {
        printf("arg1 must be 0 ,1 ,2 or 3 \n");
        return 1;
    }
ltqin's avatar
ltqin committed
135
136
    auto LayOut = GetLayoutType();

ltqin's avatar
ltqin committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, bool isRevert) {
            if(isRevert)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
        };
    Tensor<float> a_m_k(f_host_tensor_descriptor(M, K, StrideA, LayOut[layout][0]));
    Tensor<float> b_k_n(f_host_tensor_descriptor(K, N, StrideB, LayOut[layout][1]));
    Tensor<float> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, LayOut[layout][2]));
    Tensor<float> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, LayOut[layout][2]));

    // init data
    std::size_t num_thread = std::thread::hardware_concurrency();
    a_m_k.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    b_k_n.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<float>{}, num_thread);

    host_gemm_mk_kn_mn(a_m_k,
                       b_k_n,
                       c_m_n_host_result,
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{});

    DeviceMem a_device_buf(sizeof(float) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(float) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(float) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
    GEMM_PTR gemm_ptrs;
    add_device_gemm_instance(gemm_ptrs, layout);

    bool success = false;
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<float*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
ltqin's avatar
ltqin committed
196
                                          ck::tensor_operation::element_wise::PassThrough{},
ltqin's avatar
ltqin committed
197
                                          KBatch);
ltqin's avatar
ltqin committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            invoker_ptr->Run(argument_ptr.get(), 0);

            c_device_buf.FromDevice(c_m_n_device_result.mData.data());
            if(!check_out(c_m_n_host_result, c_m_n_device_result))
            {
                success = false;
                break;
            }
            success = true;
        }
    }
    if(success)
    {
        std::cout << "test split k : Pass" << std::endl;
    }
    else
    {
        std::cout << "test split k: Fail " << std::endl;
    }
    return 0;
ltqin's avatar
ltqin committed
222
}