conv_bwd_driver_offline.cpp 14 KB
Newer Older
zjing14's avatar
zjing14 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "conv_common.hpp"
#include "host_conv_bwd_data.hpp"
#include "device_tensor.hpp"
#include "device_dynamic_convolution_backward_data_implicit_gemm_v4r1_xdlops_nhwc_kyxc_nhwk.hpp"
#include "device_dynamic_convolution_backward_data_implicit_gemm_v4r1r2_xdlops_nhwc_kyxc_nhwk.hpp"

#define USE_DYNAMIC_MODE 1
19
#define USE_CONV_BWD_V4R1_XDL_NHWC 1
zjing14's avatar
zjing14 committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#define USE_CONV_BWD_V4R1R2_XDL_NHWC 1

enum ConvBackwardDataAlgo
{
    V4R1XDLNHWC,
    V4R1R2XDLNHWC,
};

int main(int argc, char* argv[])
{
    using namespace ck;

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};
    constexpr auto I4 = Number<4>{};
    constexpr auto I5 = Number<5>{};
    constexpr auto I6 = Number<6>{};

#if USE_DYNAMIC_MODE
    // dynamic mode
    if(argc != 22)
    {
        printf("arg1 to 5: layout, algo, do_verification, init_method, do_log, nrepeat\n");
        printf("rest: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx\n");
        exit(1);
    }

Chao Liu's avatar
fix  
Chao Liu committed
49
50
51
52
53
54
    const ConvTensorLayout layout   = static_cast<ConvTensorLayout>(std::stoi(argv[1]));
    const ConvBackwardDataAlgo algo = static_cast<ConvBackwardDataAlgo>(std::stoi(argv[2]));
    const bool do_verification      = std::stoi(argv[3]);
    const int init_method           = std::stoi(argv[4]);
    const bool do_log               = std::stoi(argv[5]);
    const int nrepeat               = std::stoi(argv[6]);
zjing14's avatar
zjing14 committed
55

Chao Liu's avatar
fix  
Chao Liu committed
56
57
58
59
60
61
62
    const index_t N  = std::stoi(argv[7]);
    const index_t K  = std::stoi(argv[8]);
    const index_t C  = std::stoi(argv[9]);
    const index_t Y  = std::stoi(argv[10]);
    const index_t X  = std::stoi(argv[11]);
    const index_t Hi = std::stoi(argv[12]);
    const index_t Wi = std::stoi(argv[13]);
zjing14's avatar
zjing14 committed
63

Chao Liu's avatar
fix  
Chao Liu committed
64
65
66
67
68
69
70
71
    const index_t conv_stride_h   = std::stoi(argv[14]);
    const index_t conv_stride_w   = std::stoi(argv[15]);
    const index_t conv_dilation_h = std::stoi(argv[16]);
    const index_t conv_dilation_w = std::stoi(argv[17]);
    const index_t in_left_pad_h   = std::stoi(argv[18]);
    const index_t in_left_pad_w   = std::stoi(argv[19]);
    const index_t in_right_pad_h  = std::stoi(argv[20]);
    const index_t in_right_pad_w  = std::stoi(argv[21]);
zjing14's avatar
zjing14 committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    const index_t YEff = (Y - 1) * conv_dilation_h + 1;
    const index_t XEff = (X - 1) * conv_dilation_w + 1;

    const index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
    const index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
#else
    // static mode
    if(argc < 7)
    {
        printf("arg1 to 5: layout, algo, do_verification, init_method, do_log, nrepeat\n");
        exit(1);
    }

Chao Liu's avatar
fix  
Chao Liu committed
86
87
88
89
90
91
    const ConvTensorLayout layout   = static_cast<ConvTensorLayout>(std::stoi(argv[1]));
    const ConvBackwardDataAlgo algo = static_cast<ConvBackwardDataAlgo>(std::stoi(argv[2]));
    const bool do_verification      = std::stoi(argv[3]);
    const int init_method           = std::stoi(argv[4]);
    const bool do_log               = std::stoi(argv[5]);
    const int nrepeat               = std::stoi(argv[6]);
zjing14's avatar
zjing14 committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    constexpr index_t N  = 128;
    constexpr index_t C  = 192;
    constexpr index_t Hi = 71;
    constexpr index_t Wi = 71;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    const index_t conv_stride_h   = 2;
    const index_t conv_stride_w   = 2;
    const index_t conv_dilation_h = 1;
    const index_t conv_dilation_w = 1;
    const index_t in_left_pad_h   = 1;
    const index_t in_left_pad_w   = 1;
    const index_t in_right_pad_h  = 1;
    const index_t in_right_pad_w  = 1;

    const index_t YEff = (Y - 1) * conv_dilation_h + 1;
    const index_t XEff = (X - 1) * conv_dilation_w + 1;

    const index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
    const index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
#endif

Chao Liu's avatar
Chao Liu committed
117
#if 0
zjing14's avatar
zjing14 committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    constexpr index_t in_vector_size = 1;
    using in_data_t                  = float;
    using acc_data_t                 = float;
    using out_data_t                 = float;
#elif 1
    constexpr index_t in_vector_size = 1;
    using in_data_t                  = half_t;
    using acc_data_t                 = float;
    using out_data_t                 = half_t;
#endif

    std::vector<std::size_t> in_lengths_host(4), wei_lengths_host(4), out_lengths_host(4);

    switch(layout)
    {
    case ConvTensorLayout::NCHW:
        // NCHW
        in_lengths_host[0]  = static_cast<std::size_t>(N);
        in_lengths_host[1]  = static_cast<std::size_t>(C);
        in_lengths_host[2]  = static_cast<std::size_t>(Hi);
        in_lengths_host[3]  = static_cast<std::size_t>(Wi);
        wei_lengths_host[0] = static_cast<std::size_t>(K);
        wei_lengths_host[1] = static_cast<std::size_t>(C);
        wei_lengths_host[2] = static_cast<std::size_t>(Y);
        wei_lengths_host[3] = static_cast<std::size_t>(X);
        out_lengths_host[0] = static_cast<std::size_t>(N);
        out_lengths_host[1] = static_cast<std::size_t>(K);
        out_lengths_host[2] = static_cast<std::size_t>(Ho);
        out_lengths_host[3] = static_cast<std::size_t>(Wo);
        break;
    case ConvTensorLayout::NHWC:
        // NHWC
        in_lengths_host[0]  = static_cast<std::size_t>(N);
        in_lengths_host[1]  = static_cast<std::size_t>(Hi);
        in_lengths_host[2]  = static_cast<std::size_t>(Wi);
        in_lengths_host[3]  = static_cast<std::size_t>(C);
        wei_lengths_host[0] = static_cast<std::size_t>(K);
        wei_lengths_host[1] = static_cast<std::size_t>(Y);
        wei_lengths_host[2] = static_cast<std::size_t>(X);
        wei_lengths_host[3] = static_cast<std::size_t>(C);
        out_lengths_host[0] = static_cast<std::size_t>(N);
        out_lengths_host[1] = static_cast<std::size_t>(Ho);
        out_lengths_host[2] = static_cast<std::size_t>(Wo);
        out_lengths_host[3] = static_cast<std::size_t>(K);
        break;
    default: throw std::runtime_error("wrong! not implemented");
    }

    Tensor<in_data_t> in_host(in_lengths_host);
    Tensor<in_data_t> in_device(in_lengths_host);
    Tensor<in_data_t> wei(wei_lengths_host);
    Tensor<out_data_t> out(out_lengths_host);

    std::cout << "layout: " << layout << std::endl;
    ostream_HostTensorDescriptor(in_host.mDesc, std::cout << "in: ");
    ostream_HostTensorDescriptor(wei.mDesc, std::cout << "wei: ");
    ostream_HostTensorDescriptor(out.mDesc, std::cout << "out: ");
    print_array("InLeftPads", make_tuple(in_left_pad_h, in_left_pad_w));
    print_array("InRightPads", make_tuple(in_right_pad_h, in_right_pad_w));
    print_array("ConvStrides", make_tuple(conv_stride_h, conv_stride_w));
    print_array("ConvDilations", make_tuple(conv_dilation_h, conv_dilation_w));

    std::size_t num_thread = std::thread::hardware_concurrency();

182
    switch(init_method)
zjing14's avatar
zjing14 committed
183
    {
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    case 0:
        // no initialization
        break;
    case 1:
        out.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        break;
    case 2:
        out.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        break;
    case 3:
        out.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        break;
    case 4:
        out.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        break;
    case 5:
        out.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0}, num_thread);
        wei.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5}, num_thread);
        break;
    default:
        out.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei.GenerateTensorValue(gen_wei, num_thread);
zjing14's avatar
zjing14 committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    }

    auto f_make_for_device_nchw = [&]() {
#if USE_DYNAMIC_MODE
        const auto in_lengths_dev     = make_tuple(N, C, Hi, Wi);
        const auto wei_lengths_dev    = make_tuple(K, C, Y, X);
        const auto out_lengths_dev    = make_tuple(N, K, Ho, Wo);
        const auto conv_strides_dev   = make_tuple(conv_stride_h, conv_stride_w);
        const auto conv_dilations_dev = make_tuple(conv_dilation_h, conv_dilation_w);
        const auto in_left_pads_dev   = make_tuple(in_left_pad_h, in_left_pad_w);
        const auto in_right_pads_dev  = make_tuple(in_right_pad_h, in_right_pad_w);
#else
        const auto in_lengths_dev =
            make_tuple(Number<N>{}, Number<C>{}, Number<Hi>{}, Number<Wi>{});
        const auto wei_lengths_dev = make_tuple(Number<K>{}, Number<C>{}, Number<Y>{}, Number<X>{});
        const auto out_lengths_dev =
            make_tuple(Number<N>{}, Number<K>{}, Number<Ho>{}, Number<Wo>{});
        const auto conv_strides_dev = make_tuple(Number<conv_stride_h>{}, Number<conv_stride_w>{});
        const auto conv_dilations_dev =
            make_tuple(Number<conv_dilation_h>{}, Number<conv_dilation_w>{});
        const auto in_left_pads_dev = make_tuple(Number<in_left_pad_h>{}, Number<in_left_pad_w>{});
        const auto in_right_pads_dev =
            make_tuple(Number<in_right_pad_h>{}, Number<in_right_pad_w>{});
#endif

        return make_tuple(in_lengths_dev,
                          wei_lengths_dev,
                          out_lengths_dev,
                          conv_strides_dev,
                          conv_dilations_dev,
                          in_left_pads_dev,
                          in_right_pads_dev);
    };

    auto f_make_for_device_nhwc = [&]() {
#if USE_DYNAMIC_MODE
        const auto in_lengths_dev     = make_tuple(N, Hi, Wi, C);
        const auto wei_lengths_dev    = make_tuple(K, Y, X, C);
        const auto out_lengths_dev    = make_tuple(N, Ho, Wo, K);
        const auto conv_strides_dev   = make_tuple(conv_stride_h, conv_stride_w);
        const auto conv_dilations_dev = make_tuple(conv_dilation_h, conv_dilation_w);
        const auto in_left_pads_dev   = make_tuple(in_left_pad_h, in_left_pad_w);
        const auto in_right_pads_dev  = make_tuple(in_right_pad_h, in_right_pad_w);
#else
        const auto in_lengths_dev =
            make_tuple(Number<N>{}, Number<Hi>{}, Number<Wi>{}, Number<C>{});
        const auto wei_lengths_dev = make_tuple(Number<K>{}, Number<Y>{}, Number<X>{}, Number<C>{});
        const auto out_lengths_dev =
            make_tuple(Number<N>{}, Number<Ho>{}, Number<Wo>{}, Number<K>{});
        const auto conv_strides_dev = make_tuple(Number<conv_stride_h>{}, Number<conv_stride_w>{});
        const auto conv_dilations_dev =
            make_tuple(Number<conv_dilation_h>{}, Number<conv_dilation_w>{});
        const auto in_left_pads_dev = make_tuple(Number<in_left_pad_h>{}, Number<in_left_pad_w>{});
        const auto in_right_pads_dev =
            make_tuple(Number<in_right_pad_h>{}, Number<in_right_pad_w>{});
#endif

        return make_tuple(in_lengths_dev,
                          wei_lengths_dev,
                          out_lengths_dev,
                          conv_strides_dev,
                          conv_dilations_dev,
                          in_left_pads_dev,
                          in_right_pads_dev);
    };

    const auto nhwc_desc = f_make_for_device_nhwc();

#if USE_CONV_BWD_V4R1_XDL_NHWC
    if(algo == ConvBackwardDataAlgo::V4R1XDLNHWC)
    {
        if(layout != ConvTensorLayout::NHWC)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nhwc();

        device_dynamic_convolution_backward_data_implicit_gemm_v4r1_xdlops_nhwc_kyxc_nhwk<
            in_data_t,
            acc_data_t,
            out_data_t>(tmp[I0],
                        tmp[I1],
                        tmp[I2],
                        tmp[I3],
                        tmp[I4],
                        tmp[I5],
                        tmp[I6],
                        in_device,
                        wei,
                        out,
                        nrepeat);
    }
#endif

#if USE_CONV_BWD_V4R1R2_XDL_NHWC
    if(algo == ConvBackwardDataAlgo::V4R1R2XDLNHWC)
    {
        if(layout != ConvTensorLayout::NHWC)
        {
            throw std::runtime_error("wrong! layout");
        }

        const auto tmp = f_make_for_device_nhwc();

        device_dynamic_convolution_backward_data_implicit_gemm_v4r1r2_xdlops_nhwc_kyxc_nhwk<
            in_data_t,
            acc_data_t,
            out_data_t>(tmp[I0],
                        tmp[I1],
                        tmp[I2],
                        tmp[I3],
                        tmp[I4],
                        tmp[I5],
                        tmp[I6],
                        in_device,
                        wei,
                        out,
                        nrepeat);
    }
#endif

    if(do_verification)
    {
        host_direct_convolution_backward_data(in_host,
                                              wei,
                                              out,
                                              make_tuple(conv_stride_h, conv_stride_w),
                                              make_tuple(conv_dilation_h, conv_dilation_w),
                                              make_tuple(in_left_pad_h, in_left_pad_w),
                                              make_tuple(in_right_pad_h, in_right_pad_w),
                                              layout);

        check_error(in_host, in_device);

        if(do_log)
        {
            LogRangeAsType<float>(std::cout << "out : ", out.mData, ",") << std::endl;
            LogRangeAsType<float>(std::cout << "wei: ", wei.mData, ",") << std::endl;
            LogRangeAsType<float>(std::cout << "in_host  : ", in_host.mData, ",") << std::endl;
            LogRangeAsType<float>(std::cout << "in_device: ", in_device.mData, ",") << std::endl;
        }
    }
}