device_gemm_xdl.hpp 19.1 KB
Newer Older
1
2
3
4
#ifndef DEVICE_GEMM_XDL_HPP
#define DEVICE_GEMM_XDL_HPP

#include <iostream>
Chao Liu's avatar
Chao Liu committed
5
#include <sstream>
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"

namespace ck {
namespace tensor_operation {
namespace device {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
Chao Liu's avatar
Chao Liu committed
26
27
28
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
          ck::index_t BlockSize,
          ck::index_t MPerBlock,
          ck::index_t NPerBlock,
          ck::index_t K0PerBlock,
          ck::index_t K1,
          ck::index_t MPerXDL,
          ck::index_t NPerXDL,
          ck::index_t MXdlPerWave,
          ck::index_t NXdlPerWave,
          typename ABlockTransferThreadClusterLengths_K0_M_K1,
          typename ABlockTransferThreadClusterArrangeOrder,
          typename ABlockTransferSrcAccessOrder,
          ck::index_t ABlockTransferSrcVectorDim,
          ck::index_t ABlockTransferSrcScalarPerVector,
          ck::index_t ABlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
44
          bool ABlockLdsAddExtraM,
45
46
47
48
49
50
          typename BBlockTransferThreadClusterLengths_K0_N_K1,
          typename BBlockTransferThreadClusterArrangeOrder,
          typename BBlockTransferSrcAccessOrder,
          ck::index_t BBlockTransferSrcVectorDim,
          ck::index_t BBlockTransferSrcScalarPerVector,
          ck::index_t BBlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
51
          bool BBlockLdsAddExtraN,
52
          ck::index_t CThreadTransferSrcDstVectorDim,
Chao Liu's avatar
Chao Liu committed
53
          ck::index_t CThreadTransferDstScalarPerVector>
Chao Liu's avatar
Chao Liu committed
54
55
struct DeviceGemmXdl
    : public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
{
    static constexpr auto I0 = Number<0>{};
    static constexpr auto I1 = Number<1>{};
    static constexpr auto I2 = Number<2>{};

    static constexpr auto K1Number = Number<K1>{};

    static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto a_grid_desc_m_k = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
            }
        }();

80
81
        const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;

82
83
84
        const auto a_grid_desc_k0_m_k1 =
            transform_tensor_descriptor(a_grid_desc_m_k,
                                        make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
Jing Zhang's avatar
Jing Zhang committed
85
                                                   make_right_pad_transform(M, PadM)),
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
                                        make_tuple(Sequence<1>{}, Sequence<0>{}),
                                        make_tuple(Sequence<0, 2>{}, Sequence<1>{}));

        return a_grid_desc_k0_m_k1;
    }

    static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto b_grid_desc_k_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
            }
        }();

109
110
        const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;

111
112
113
        const auto b_grid_desc_k0_n_k1 =
            transform_tensor_descriptor(b_grid_desc_k_n,
                                        make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
Jing Zhang's avatar
Jing Zhang committed
114
                                                   make_right_pad_transform(N, PadN)),
115
116
117
118
119
120
121
122
                                        make_tuple(Sequence<0>{}, Sequence<1>{}),
                                        make_tuple(Sequence<0, 2>{}, Sequence<1>{}));

        return b_grid_desc_k0_n_k1;
    }

    static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
    {
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        const auto c_grid_desc_m_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
            }
        }();

        const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
        const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;

        const auto c_grid_desc_m_n_ = transform_tensor_descriptor(
            c_grid_desc_m_n,
Jing Zhang's avatar
Jing Zhang committed
139
            make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
140
141
142
143
            make_tuple(Sequence<0>{}, Sequence<1>{}),
            make_tuple(Sequence<0>{}, Sequence<1>{}));

        return c_grid_desc_m_n_;
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    }

    using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
    using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
    using CGridDesc_M_N     = decltype(MakeCGridDescriptor_M_N(1, 1, 1));

    // GridwiseGemm
    using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
        BlockSize,
        ADataType, // TODO: distinguish A/B datatype
        AccDataType,
        CDataType,
        InMemoryDataOperationEnum_t::Set,
        AGridDesc_K0_M_K1,
        BGridDesc_K0_N_K1,
        CGridDesc_M_N,
Chao Liu's avatar
Chao Liu committed
160
161
162
        AElementwiseOperation,
        BElementwiseOperation,
        CElementwiseOperation,
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        MPerBlock,
        NPerBlock,
        K0PerBlock,
        MPerXDL,
        NPerXDL,
        K1,
        MXdlPerWave,
        NXdlPerWave,
        ABlockTransferThreadClusterLengths_K0_M_K1,
        ABlockTransferThreadClusterArrangeOrder,
        ABlockTransferSrcAccessOrder,
        ABlockTransferSrcVectorDim,
        ABlockTransferSrcScalarPerVector,
        ABlockTransferDstScalarPerVector_K1,
        false, // AThreadTransferSrcResetCoordinateAfterRun,
Chao Liu's avatar
Chao Liu committed
178
        ABlockLdsAddExtraM,
179
180
181
182
183
184
        BBlockTransferThreadClusterLengths_K0_N_K1,
        BBlockTransferThreadClusterArrangeOrder,
        BBlockTransferSrcAccessOrder,
        BBlockTransferSrcVectorDim,
        BBlockTransferSrcScalarPerVector,
        BBlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
185
186
        false, // BThreadTransferSrcResetCoordinateAfterRun,
        BBlockLdsAddExtraN,
187
188
        Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
        CThreadTransferSrcDstVectorDim,
Chao Liu's avatar
Chao Liu committed
189
        CThreadTransferDstScalarPerVector>;
190
191
192
193
194
195
196
197
198
199
200
201
202
203

    // Argument
    struct Argument : public BaseArgument
    {
        Argument(const ADataType* p_a_grid,
                 const BDataType* p_b_grid,
                 CDataType* p_c_grid,
                 index_t M,
                 index_t N,
                 index_t K,
                 index_t StrideA,
                 index_t StrideB,
                 index_t StrideC,
                 index_t M01,
Chao Liu's avatar
Chao Liu committed
204
205
206
207
                 index_t N01,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
208
209
210
211
212
213
214
215
216
            : p_a_grid_{p_a_grid},
              p_b_grid_{p_b_grid},
              p_c_grid_{p_c_grid},
              a_grid_desc_k0_m_k1_{},
              b_grid_desc_k0_n_k1_{},
              c_grid_desc_m_n_{},
              c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
              block_2_ctile_map_{},
              M01_{M01},
Chao Liu's avatar
Chao Liu committed
217
218
219
220
              N01_{N01},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        {
            a_grid_desc_k0_m_k1_ = DeviceGemmXdl::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
            b_grid_desc_k0_n_k1_ = DeviceGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
            c_grid_desc_m_n_     = DeviceGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);

            if(GridwiseGemm::CheckValidity(
                   a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
            {
                c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
                    GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);

                block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
            }
        }

        //  private:
        const ADataType* p_a_grid_;
        const BDataType* p_b_grid_;
        CDataType* p_c_grid_;
        AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
        BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
        CGridDesc_M_N c_grid_desc_m_n_;
Chao Liu's avatar
Chao Liu committed
243
244
245
        typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
            c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
        typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
246
247
        index_t M01_;
        index_t N01_;
Chao Liu's avatar
Chao Liu committed
248
249
250
        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
251
252
253
254
255
256
257
258
259
260
    };

    // Invoker
    struct Invoker : public BaseInvoker
    {
        using Argument = DeviceGemmXdl::Argument;

        float Run(const Argument& arg, int nrepeat = 1)
        {
            {
Jing Zhang's avatar
Jing Zhang committed
261
262
263
264
                std::cout << "BlockGemmShape: {" << MPerBlock << ", " << NPerBlock << ", "
                          << K0PerBlock << "}, WaveGemmShape: {" << MXdlPerWave * MPerXDL << ", "
                          << NXdlPerWave * NPerXDL << "} XDLGemmShape: {" << MPerXDL << ", "
                          << NPerXDL << "}" << std::endl;
265

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
                std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
                          << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
                          << arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
                          << ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
                          << arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
                          << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
            }

            if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                            arg.b_grid_desc_k0_n_k1_,
                                            arg.c_grid_desc_m_n_,
                                            arg.M01_,
                                            arg.N01_))
            {
                throw std::runtime_error(
                    "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
            }

            const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);

            const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);

            const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);

            float ave_time = 0;

            if(has_main_k0_block_loop)
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
Chao Liu's avatar
Chao Liu committed
304
                    remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
305
306
307
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Chao Liu's avatar
Chao Liu committed
308
                    remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
309
310
311
312
313
314
315
316
317
318
319
320
321
                    true>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
322
323
324
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
325
326
327
328
329
330
331
332
333
334
                                                  arg.block_2_ctile_map_);
            }
            else
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
Chao Liu's avatar
Chao Liu committed
335
                    remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
336
337
338
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Chao Liu's avatar
Chao Liu committed
339
                    remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
340
341
342
343
344
345
346
347
348
349
350
351
352
                    false>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
353
354
355
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
                                                  arg.block_2_ctile_map_);
            }

            return ave_time;
        }

        // polymorphic
        float Run(const BaseArgument* p_arg, int nrepeat = 1) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    static bool IsSupportedArgument(const Argument& arg)
    {
        return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                           arg.b_grid_desc_k0_n_k1_,
                                           arg.c_grid_desc_m_n_,
                                           arg.M01_,
                                           arg.N01_);
    }

    // polymorphic
    bool IsSupportedArgument(const BaseArgument* p_arg) override
    {
        return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
    }

    static auto MakeArgument(const ADataType* p_a,
                             const BDataType* p_b,
                             CDataType* p_c,
                             index_t M,
                             index_t N,
                             index_t K,
                             index_t StrideA,
                             index_t StrideB,
Chao Liu's avatar
Chao Liu committed
398
399
400
401
                             index_t StrideC,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op)
402
    {
Chao Liu's avatar
Chao Liu committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        return Argument{p_a,
                        p_b,
                        p_c,
                        M,
                        N,
                        K,
                        StrideA,
                        StrideB,
                        StrideC,
                        1,
                        1,
                        a_element_op,
                        b_element_op,
                        c_element_op};
417
418
419
420
421
422
423
424
425
426
427
428
429
    }

    static auto MakeInvoker() { return Invoker{}; }

    // polymorphic
    std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
                                                      const void* p_b,
                                                      void* p_c,
                                                      index_t M,
                                                      index_t N,
                                                      index_t K,
                                                      index_t StrideA,
                                                      index_t StrideB,
Chao Liu's avatar
Chao Liu committed
430
431
432
433
                                                      index_t StrideC,
                                                      AElementwiseOperation a_element_op,
                                                      BElementwiseOperation b_element_op,
                                                      CElementwiseOperation c_element_op) override
434
435
436
437
438
439
440
441
442
443
444
    {
        return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
                                          static_cast<const BDataType*>(p_b),
                                          static_cast<CDataType*>(p_c),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          1,
Chao Liu's avatar
Chao Liu committed
445
446
447
448
                                          1,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op);
449
450
451
452
453
454
455
    }

    // polymorphic
    std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
    {
        return std::make_unique<Invoker>(Invoker{});
    }
Chao Liu's avatar
Chao Liu committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

    // polymorphic
    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "DeviceGemmXdl"
            << "<"
            << BlockSize << ", "
            << MPerBlock << ", "
            << NPerBlock << ", "
            << K0PerBlock
            << ">";
        // clang-format on

        return str.str();
    }
474
475
476
477
478
479
};

} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif