cgemm_xdl_bf16.cpp 14.2 KB
Newer Older
myamlak's avatar
myamlak committed
1
2
3
4
/*******************************************************************************
 *
 * MIT License
 *
Chao Liu's avatar
Chao Liu committed
5
 * Copyright (c) 2022 Advanced Micro Devices, Inc.
myamlak's avatar
myamlak committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 *******************************************************************************/
myamlak's avatar
myamlak committed
26
27
28
29
30
31
32
33
34
35
36
37
38
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>

#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
myamlak's avatar
myamlak committed
39
#include "device_cgemm_4gemm_xdl_cshuffle.hpp"
myamlak's avatar
myamlak committed
40
41
42
43
#include "element_wise_operation.hpp"
#include "reference_cgemm.hpp"
#include "gemm_specialization.hpp"

myamlak's avatar
myamlak committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using BF16 = ck::bhalf_t;
using F32  = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType   = BF16;
using BDataType   = BF16;
using CDataType   = BF16;
using AccDataType = F32;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;

// clang-format off
using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
    <ALayout,                    // typename ALayout
     BLayout,                    // typename BLayout
     CLayout,                    // typename CLayout
     ADataType,                  // typename ADataType
     BDataType,                  // typename BDataType
     CDataType,                  // typename CDataType
     AccDataType,                // typename GemmAccDataType
     CDataType,                  // typename CShuffleDataType
     PassThrough,                // typename AElementwiseOperation
     PassThrough,                // typename BElementwiseOperation
     PassThrough,                // typename CElementwiseOperation
     GemmDefault,                // GemmSpecialization GemmSpec
     1,                          // index_t NumGemmKPrefetchStage
     256,                        // index_t BlockSize
     256,                        // index_t MPerBlock
     128,                        // index_t NPerBlock
     32,                         // index_t KPerBlock
     8,                          // index_t AK1
     8,                          // index_t BK1
     32,                         // index_t MPerXDL
     32,                         // index_t NPerXDL
     4,                          // index_t MXdlPerWave
     2,                          // index_t NXdlPerWave
     S<4, 64, 1>,                // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
     S<1, 0, 2>,                 // typename ABlockTransferThreadClusterArrangeOrder
     S<1, 0, 2>,                 // typename ABlockTransferSrcAccessOrder
     2,                          // index_t ABlockTransferSrcVectorDim
     8,                          // index_t ABlockTransferSrcScalarPerVector
     8,                          // index_t ABlockTransferDstScalarPerVector_AK1
     1,                          // index_t ABlockLdsExtraM
     S<4, 64, 1>,                // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
     S<1, 0, 2>,                 // typename BBlockTransferThreadClusterArrangeOrder
     S<1, 0, 2>,                 // typename BBlockTransferSrcAccessOrder
     2,                          // index_t BBlockTransferSrcVectorDim
     8,                          // index_t BBlockTransferSrcScalarPerVector
     8,                          // index_t BBlockTransferDstScalarPerVector_BK1
     1,                          // index_t BBlockLdsExtraN
     1,                          // index_t CShuffleMXdlPerWavePerShuffle
     1,                          // index_t CShuffleNXdlPerWavePerShuffle
     S<1, 32, 1, 8>,             // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
     8>;                         // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on

using ReferenceCGemmInstance = ck::tensor_operation::host::
    ReferenceCGemm<float, float, float, PassThrough, PassThrough, PassThrough>;

int main(int argc, char* argv[])
{
116
117
118
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;
myamlak's avatar
myamlak committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    // CGEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
133
        time_kernel     = std::stoi(argv[3]);
myamlak's avatar
myamlak committed
134
135
136
137
138
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
139
        time_kernel     = std::stoi(argv[3]);
myamlak's avatar
myamlak committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);

        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<ADataType> a_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<BDataType> b_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_real_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_imag_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k_real: " << a_m_k_real.mDesc << std::endl;
    std::cout << "a_m_k_imag: " << a_m_k_imag.mDesc << std::endl;
    std::cout << "b_k_n_real: " << b_k_n_real.mDesc << std::endl;
    std::cout << "b_k_n_imag: " << b_k_n_imag.mDesc << std::endl;
    std::cout << "c_m_n_real: " << c_m_n_real_device_result.mDesc << std::endl;
    std::cout << "c_m_n_imag: " << c_m_n_imag_device_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
myamlak's avatar
myamlak committed
190
191
192
193
        a_m_k_real.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
        a_m_k_imag.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
        b_k_n_real.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
        b_k_n_imag.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
myamlak's avatar
myamlak committed
194
195
        break;
    default:
myamlak's avatar
myamlak committed
196
197
        a_m_k_real.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
        a_m_k_imag.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
myamlak's avatar
myamlak committed
198
199
200
201
        b_k_n_real.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        b_k_n_imag.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
    }

myamlak's avatar
myamlak committed
202
203
    auto cgemm = DeviceCGemmInstance{};

myamlak's avatar
myamlak committed
204
205
206
207
208
209
210
211
    DeviceMem a_m_k_real_device_buf(sizeof(ADataType) * a_m_k_real.mDesc.GetElementSpace());
    DeviceMem a_m_k_imag_device_buf(sizeof(ADataType) * a_m_k_imag.mDesc.GetElementSpace());
    DeviceMem b_k_n_real_device_buf(sizeof(BDataType) * b_k_n_real.mDesc.GetElementSpace());
    DeviceMem b_k_n_imag_device_buf(sizeof(BDataType) * b_k_n_imag.mDesc.GetElementSpace());
    DeviceMem c_m_n_real_device_buf(sizeof(CDataType) *
                                    c_m_n_real_device_result.mDesc.GetElementSpace());
    DeviceMem c_m_n_imag_device_buf(sizeof(CDataType) *
                                    c_m_n_imag_device_result.mDesc.GetElementSpace());
myamlak's avatar
myamlak committed
212
    DeviceMem workspace_device_buf(cgemm.GetWorkspaceSize(M, N, K, StrideA, StrideB, StrideC));
myamlak's avatar
myamlak committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    a_m_k_real_device_buf.ToDevice(a_m_k_real.mData.data());
    a_m_k_imag_device_buf.ToDevice(a_m_k_imag.mData.data());
    b_k_n_real_device_buf.ToDevice(b_k_n_real.mData.data());
    b_k_n_imag_device_buf.ToDevice(b_k_n_imag.mData.data());

    auto a_element_op = PassThrough{};
    auto b_element_op = PassThrough{};
    auto c_element_op = PassThrough{};

    // do GEMM
    auto invoker = cgemm.MakeInvoker();
    auto argument =
        cgemm.MakeArgument(static_cast<ADataType*>(a_m_k_real_device_buf.GetDeviceBuffer()),
                           static_cast<ADataType*>(a_m_k_imag_device_buf.GetDeviceBuffer()),
                           static_cast<BDataType*>(b_k_n_real_device_buf.GetDeviceBuffer()),
                           static_cast<BDataType*>(b_k_n_imag_device_buf.GetDeviceBuffer()),
                           static_cast<CDataType*>(c_m_n_real_device_buf.GetDeviceBuffer()),
                           static_cast<CDataType*>(c_m_n_imag_device_buf.GetDeviceBuffer()),
myamlak's avatar
myamlak committed
232
                           static_cast<CDataType*>(workspace_device_buf.GetDeviceBuffer()),
myamlak's avatar
myamlak committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
                           M,
                           N,
                           K,
                           StrideA,
                           StrideB,
                           StrideC,
                           a_element_op,
                           b_element_op,
                           c_element_op);

    if(!cgemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_cgemm with the specified compilation parameters does "
            "not support this CGEMM problem");
    }

250
    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
myamlak's avatar
myamlak committed
251

myamlak's avatar
myamlak committed
252
253
254
255
    std::size_t flop = std::size_t(8) * M * N * K;
    std::size_t num_btype =
        std::size_t(2) *
        (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N);
myamlak's avatar
myamlak committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << cgemm.GetTypeString() << std::endl;

    c_m_n_real_device_buf.FromDevice(c_m_n_real_device_result.mData.data());
    c_m_n_imag_device_buf.FromDevice(c_m_n_imag_device_result.mData.data());

    if(do_verification)
    {
        Tensor<float> a_f32_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
        Tensor<float> a_f32_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
        Tensor<float> b_f32_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
        Tensor<float> b_f32_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
        Tensor<float> c_m_n_real_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
        Tensor<float> c_m_n_imag_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
        Tensor<float> c_m_n_real_device_f32_result(
            f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
        Tensor<float> c_m_n_imag_device_f32_result(
            f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

        bf16_to_f32_(a_m_k_real, a_f32_m_k_real);
        bf16_to_f32_(a_m_k_imag, a_f32_m_k_imag);
        bf16_to_f32_(b_k_n_real, b_f32_k_n_real);
        bf16_to_f32_(b_k_n_imag, b_f32_k_n_imag);
        bf16_to_f32_(c_m_n_real_device_result, c_m_n_real_device_f32_result);
        bf16_to_f32_(c_m_n_imag_device_result, c_m_n_imag_device_f32_result);

        auto ref_cgemm   = ReferenceCGemmInstance{};
        auto ref_invoker = ref_cgemm.MakeInvoker();

        auto ref_argument = ref_cgemm.MakeArgument(a_f32_m_k_real,
                                                   a_f32_m_k_imag,
                                                   b_f32_k_n_real,
                                                   b_f32_k_n_imag,
                                                   c_m_n_real_host_result,
                                                   c_m_n_imag_host_result,
                                                   a_element_op,
                                                   b_element_op,
                                                   c_element_op);

        ref_invoker.Run(ref_argument);

myamlak's avatar
Format  
myamlak committed
302
303
304
305
        ck::utils::check_err(c_m_n_real_device_f32_result.mData,
                             c_m_n_real_host_result.mData,
                             "Verification error: incorrect results in real part!",
                             1e-2f,
myamlak's avatar
myamlak committed
306
                             1e-1f);
myamlak's avatar
Format  
myamlak committed
307
308
309
310
        ck::utils::check_err(c_m_n_imag_device_f32_result.mData,
                             c_m_n_imag_host_result.mData,
                             "Verification error: incorrect results in imaginary part!",
                             1e-2f,
myamlak's avatar
myamlak committed
311
                             1e-1f);
myamlak's avatar
myamlak committed
312
313
314
315
    }

    return 0;
}