profile_groupnorm_impl.hpp 7.51 KB
Newer Older
rocking's avatar
rocking committed
1
2
3
4
5
6
7
8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>

#include "ck/ck.hpp"
Chao Liu's avatar
Chao Liu committed
9
10

#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"
rocking's avatar
rocking committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm.hpp"

namespace ck {
namespace profiler {

template <typename XDataType,
          typename GammaDataType,
          typename BetaDataType,
          typename AccDataType,
          typename YDataType>
26
bool profile_groupnorm_impl(int do_verification,
rocking's avatar
rocking committed
27
28
29
                            int init_method,
                            bool do_log,
                            bool time_kernel,
Chao Liu's avatar
Chao Liu committed
30
                            std::vector<index_t> length)
rocking's avatar
rocking committed
31
{
Chao Liu's avatar
Chao Liu committed
32
    using PassThrough = ck::tensor_operation::element_wise::PassThrough;
rocking's avatar
rocking committed
33
34

    if(length.size() != 5)
35
        return false;
rocking's avatar
rocking committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    index_t G = length[3];
    index_t C = length[4];

    std::vector<index_t> reduce_dim      = {1, 2, 4};
    std::vector<index_t> gammaBetaLength = {G, C};
    std::vector<index_t> gammaBetaStride = {0, 0, 0, C, 1};

    Tensor<XDataType> x(length);
    Tensor<GammaDataType> gamma(gammaBetaLength);
    Tensor<BetaDataType> beta(gammaBetaLength);
    Tensor<YDataType> y(length);
    Tensor<YDataType> host_y(length);

    switch(init_method)
    {
    case 0:
        x.GenerateTensorValue(GeneratorTensor_1<XDataType>{});
        gamma.GenerateTensorValue(GeneratorTensor_1<GammaDataType>{});
        beta.GenerateTensorValue(GeneratorTensor_1<BetaDataType>{});
        break;
    case 1:
        x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5});
        gamma.GenerateTensorValue(GeneratorTensor_2<GammaDataType>{-5, 5});
        beta.GenerateTensorValue(GeneratorTensor_2<BetaDataType>{-5, 5});
        break;
    default:
        x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1});
        gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-0.5, 0.5});
        beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-0.5, 0.5});
    }

    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());

    x_dev.ToDevice(x.mData.data());
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());

    // add device normalization instances
Chao Liu's avatar
Chao Liu committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    using DeviceOp = ck::tensor_operation::device::DeviceLayernorm<XDataType,
                                                                   GammaDataType,
                                                                   BetaDataType,
                                                                   AccDataType,
                                                                   YDataType,
                                                                   PassThrough,
                                                                   5,
                                                                   3>;

    // get device op instances
    const auto instance_ptrs =
        ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
            DeviceOp>::GetInstances();

    std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
rocking's avatar
rocking committed
93
94
95
96
97
98
99

    std::string best_instance_name;
    float best_avg_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
100
101
102
103
104
105
106
107
108
109
110
        using ReferenceInstance = ck::tensor_operation::host::ReferenceGroupnorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 AccDataType,
                                                                                 PassThrough>;

        ReferenceInstance ref;
        auto ref_argument = ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, length, 1e-6);
        auto ref_invoker  = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);
rocking's avatar
rocking committed
111
112
    }

113
114
    int num_kernel = 0;

Chao Liu's avatar
Chao Liu committed
115
    for(auto& inst_ptr : instance_ptrs)
rocking's avatar
rocking committed
116
117
118
119
120
121
122
123
124
125
126
127
128
    {
        auto argument_ptr = inst_ptr->MakeArgumentPointer(
            length,
            std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
            gammaBetaStride,
            gammaBetaStride,
            std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
            reduce_dim,
            1e-6,
            x_dev.GetDeviceBuffer(),
            gamma_dev.GetDeviceBuffer(),
            beta_dev.GetDeviceBuffer(),
            y_dev.GetDeviceBuffer(),
Chao Liu's avatar
Chao Liu committed
129
            PassThrough{});
rocking's avatar
rocking committed
130

131
        if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
rocking's avatar
rocking committed
132
        {
133
134
135
136
137
            ++num_kernel;
        }
        else
        {
            continue;
rocking's avatar
rocking committed
138
139
140
141
142
143
144
145
146
147
148
149
150
        }

        auto invoker_ptr = inst_ptr->MakeInvokerPointer();

        float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

        std::size_t num_bytes = x.mDesc.GetElementSize() * sizeof(XDataType) +
                                gamma.mDesc.GetElementSize() * sizeof(GammaDataType) +
                                beta.mDesc.GetElementSize() * sizeof(BetaDataType) +
                                y.mDesc.GetElementSize() * sizeof(YDataType);

        float gb_per_sec = num_bytes / 1.E6 / avg_time;

151
152
153
        if(time_kernel)
            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
                      << inst_ptr->GetTypeString() << std::endl;
rocking's avatar
rocking committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

        if(avg_time < best_avg_time)
        {
            best_instance_name = inst_ptr->GetTypeString();
            best_avg_time      = avg_time;
            best_gb_per_sec    = gb_per_sec;
        }

        if(do_verification)
        {
            y_dev.FromDevice(y.mData.data());

            bool pass =
                ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results", 1e-3, 1e-3);

            if(do_log)
            {
                LogRangeAsType<float>(std::cout << "x  : ", x.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "host_y  : ", host_y.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "y  : ", y.mData, ",") << std::endl;
            }

            if(!pass)
            {
                std::cout << inst_ptr->GetTypeString() << " failed verification: ";
                LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
180
                return false;
rocking's avatar
rocking committed
181
182
183
            }
            else
            {
184
185
                if(time_kernel)
                    std::cout << "pass" << std::endl;
rocking's avatar
rocking committed
186
187
188
189
            }
        }
    }

190
191
192
193
194
195
196
197
198
199
200
201
202
203
    if(time_kernel)
    {
        LogRange(std::cout << "length = ", length, ",") << ", ";
        std::cout << "num_kernel = " << num_kernel << ", best perf = " << best_avg_time << " ms, "
                  << best_gb_per_sec << " GB/s, " << best_instance_name << std::endl;
    }

    if(num_kernel == 0)
    {
        std::cout << "Error: No kernel is tested" << std::endl;
        return false;
    }

    return true;
rocking's avatar
rocking committed
204
205
206
207
}

} // namespace profiler
} // namespace ck