layernorm_splitk.cpp 6.29 KB
Newer Older
rocking's avatar
rocking committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_splitk_impl.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"

using XDataType       = ck::half_t;
using GammaDataType   = ck::half_t;
using BetaDataType    = ck::half_t;
using YDataType       = ck::half_t;
using ComputeDataType = float;
using PassThrough     = ck::tensor_operation::element_wise::PassThrough;

constexpr int Rank         = 2;
constexpr int NumReduceDim = 1;

using DeviceInstance =
    ck::tensor_operation::device::DeviceNormalizationSplitKImpl<XDataType,
                                                                GammaDataType,
                                                                BetaDataType,
                                                                ComputeDataType,
                                                                YDataType,
                                                                PassThrough,
                                                                Rank,
                                                                NumReduceDim,
                                                                256, // BlockSize
                                                                8,   // ClusterM
                                                                32,  // ClusterK
                                                                1,   // SliceM
                                                                8,   // SliceK
                                                                1,   // SrcVecDim (0=M, 1=K)
                                                                8,   // XScalarPerVector
                                                                1,   // GammaVecDim (0=M, 1=K)
                                                                8,   // GammaScalarPerVector
                                                                1,   // BetaVecDim (0=M, 1=K)
                                                                8,   // BetaScalarPerVector
                                                                8>;  // YScalarPerVector

int main()
{
    bool time_kernel = false;

    ck::index_t M      = 1024;
    ck::index_t N      = 1024;
    ck::index_t Stride = N;

    auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
        return HostTensorDescriptor({len}, {stride});
    };

    auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
        using namespace ck::literals;

        return HostTensorDescriptor({row, col}, {stride, 1_uz});
    };

    Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
    Tensor<GammaDataType> gamma(f_host_tensor_descriptor1d(N, 1));
    Tensor<BetaDataType> beta(f_host_tensor_descriptor1d(N, 1));
    Tensor<YDataType> y(f_host_tensor_descriptor2d(M, N, Stride));

    x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
    gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
    beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});

    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());

    x_dev.ToDevice(x.mData.data());
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());

    auto device_instance = DeviceInstance{};
    auto argument_ptr    = device_instance.MakeArgumentPointer(
        {M, N},
        std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
        {0, 1},
        {0, 1},
        std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
        {1},
        1e-4,
        x_dev.GetDeviceBuffer(),
        gamma_dev.GetDeviceBuffer(),
        beta_dev.GetDeviceBuffer(),
        y_dev.GetDeviceBuffer(),
        nullptr,
        nullptr,
        PassThrough{});

    if(!device_instance.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout << "The runtime parameters are not supported" << std::endl;
        return 1;
    };

    size_t workspace_sz = device_instance.GetWorkSpaceSize(argument_ptr.get());
    DeviceMem workspace_dev(workspace_sz);
    device_instance.SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());

    auto invoker_ptr = device_instance.MakeInvokerPointer();
    invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    bool pass = true;
    {
        Tensor<YDataType> host_y(f_host_tensor_descriptor2d(M, N, Stride));
        using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 ComputeDataType,
                                                                                 PassThrough,
                                                                                 Rank,
                                                                                 NumReduceDim>;

        ReferenceInstance ref;
        auto ref_argument =
            ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, {M, N}, {1}, 1e-4);
        auto ref_invoker = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);

        y_dev.FromDevice(y.mData.data());
        pass &= ck::utils::check_err(y, host_y, "Error: Incorrect results", 1e-3, 1e-3);
    }
    return (pass ? 0 : 1);
}