"docs/vscode:/vscode.git/clone" did not exist on "ebff4ee6483656a2a315f664b62ebae4005d2125"
Supported_Primitives_Guide.rst 2.57 KB
Newer Older
1
2
3
4
5
6
7
==========================
Supported Primitives Guide
==========================

This document contains details of supported primitives in Composable Kernel (CK). In contrast to the API Reference
Guide, the Supported Primitives Guide is an introduction to the math which underpins the algorithms implemented in CK.

8
------------
9
Softmax
10
------------
11
12
13
14
15
16
17
18
19
20

For vectors :math:`x^{(1)}, x^{(2)}, \ldots, x^{(T)}` of size :math:`B` we can decompose the softmax of concatenated
:math:`x = [ x^{(1)}\ | \ \ldots \ | \ x^{(T)} ]` as,

.. math::
   :nowrap:

   \begin{align}
      m(x) & = m( [ x^{(1)}\ | \ \ldots \ | \ x^{(T)} ] ) = \max( m(x^{(1)}),\ldots, m(x^{(T)}) )  \\
      f(x) & = [\exp( m(x^{(1)}) - m(x) ) f( x^{(1)} )\ | \ \ldots \ | \ \exp( m(x^{(T)}) - m(x) ) f( x^{(T)} )] \\
21
22
      z(x) & = \exp( m(x^{(1)}) - m(x) )\ z(x^{(1)}) + \ldots + \exp( m(x^{(T)}) - m(x) )\ z(x^{(1)}) \\
      \operatorname{softmax}(x) &= f(x)\ / \ z(x)
23
24
25
   \end{align}

where :math:`f(x^{(j)}) = \exp( x^{(j)} - m(x^{(j)}) )` is of size :math:`B` and
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
:math:`z(x^{(j)}) = f(x_1^{(j)})+ \ldots+ f(x_B^{(j)})` is a scalar.

For a matrix :math:`X` composed of :math:`T_r \times T_c` tiles, :math:`X_{ij}`, of size :math:`B_r \times B_c` we can
compute the row-wise softmax as follows.

For :math:`j` from :math:`1` to :math:`T_c`, and :math:`i` from :math:`1` to :math:`T_r` calculate,

.. math::
   :nowrap:

   \begin{align}
      \tilde{m}_{ij}   &= \operatorname{rowmax}( X_{ij} ) \\
      \tilde{P}_{ij}   &= \exp(X_{ij} - \tilde{m}_{ij} ) \\
      \tilde{z}_{ij}   &= \operatorname{rowsum}( P_{ij} ) \\
   \end{align}

If :math:`j=1`, initialize running max, running sum, and the first column block of the output,

.. math::
   :nowrap:

   \begin{align}
      m_i            &= \tilde{m}_{i1} \\
      z_i            &= \tilde{z}_{i1} \\
      \tilde{Y}_{i1} &= \diag(\tilde{z}_{ij})^{-1} \tilde{P}_{i1}
   \end{align}

Else if :math:`j>1`,

1. Update running max, running sum and column blocks :math:`k=1` to :math:`k=j-1`

.. math::
   :nowrap:

   \begin{align}
      m^{new}_i &= \max(m_i, \tilde{m}_{ij} ) \\
      z^{new}_i &= \exp(m_i - m^{new}_i)\ z_i + \exp( \tilde{m}_{ij} - m^{new}_i )\ \tilde{z}_{ij}  \\
      Y_{ik}    &= \diag(z^{new}_{i})^{-1} \diag(z_{i}) \exp(m_i - m^{new}_i)\ Y_{ik}
   \end{align}

2. Initialize column block :math:`j` of output and reset running max and running sum variables:

.. math::
   :nowrap:

   \begin{align}
      \tilde{Y}_{ij} &= \diag(z^{new}_{i})^{-1} \exp(\tilde{m}_{ij} - m^{new}_i ) \tilde{P}_{ij} \\
      z_i            &= z^{new}_i \\
      m_i            &= m^{new}_i \\
   \end{align}