main.cpp 13.1 KB
Newer Older
ltqin's avatar
ltqin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"

using InDataType  = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using InLayout  = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;

using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

// clang-format off
ltqin's avatar
ltqin committed
35
36
using DeviceConvWrWInstance = ck::tensor_operation::device::
    DeviceConv2dWrWXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
ltqin's avatar
ltqin committed
37
38
39
40
41
42
43
44
45
        InDataType,                       // InDataType
        WeiDataType,                      // WeiDataType
        OutDataType,                      // OutDataType
        AccDataType,                      // AccDataType
        InElementOp,                      // InElementwiseOperation
        WeiElementOp,                     // WeiElementwiseOperation
        OutElementOp,                     // OutElementwiseOperation
        256,                              // BlockSize
        128,                              // MPerBlock
ltqin's avatar
ltqin committed
46
        128,                              // NPerBlock
ltqin's avatar
ltqin committed
47
48
49
50
51
        4,                                // K0PerBlock
        8,                                // K1
        32,                               // MPerXdl
        32,                               // NPerXdl
        2,                                // MXdlPerWave
ltqin's avatar
ltqin committed
52
        2,                                // NXdlPerWave
ltqin's avatar
ltqin committed
53
54
55
        S<1, 4, 16, 4>,                   // ABlockTransferThreadClusterLengths_K0_M_K1
        S<0, 3, 1, 2>,                    // ABlockTransferThreadClusterArrangeOrder
        S<0, 2, 1, 3>,                    // ABlockTransferSrcAccessOrder
ltqin's avatar
ltqin committed
56
        2,                                // ABlockTransferSrcVectorDim
ltqin's avatar
ltqin committed
57
        8,                                // ABlockTransferSrcScalarPerVector
ltqin's avatar
ltqin committed
58
        2,                                // ABlockTransferDstScalarPerVector_K1
ltqin's avatar
ltqin committed
59
        true,                             // ABlockLdsAddExtraM
ltqin's avatar
ltqin committed
60
61
62
        S<1, 4, 16, 4>,                   // BBlockTransferThreadClusterLengths_K0_N_K1
        S<0, 3, 1, 2>,                    // BBlockTransferThreadClusterArrangeOrder
        S<0, 2, 1, 3>,                    // BBlockTransferSrcAccessOrder
ltqin's avatar
ltqin committed
63
        2,                                // BBlockTransferSrcVectorDim
ltqin's avatar
ltqin committed
64
        8,                                // BBlockTransferSrcScalarPerVector
ltqin's avatar
ltqin committed
65
        2,                                // BBlockTransferDstScalarPerVector_K1
ltqin's avatar
ltqin committed
66
67
68
        true,                             // BBlockLdsAddExtraN
        1,                                // CShuffleMXdlPerWavePerShuffle
        1,                                // CShuffleNXdlPerWavePerShuffle
ltqin's avatar
ltqin committed
69
        S<1, 32, 1, 4>,                   // CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
ltqin's avatar
ltqin committed
70
71
72
73
74
75
76
77
78
79
80
        8>;                               // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on

using ReferenceConvWrwInstance = ck::tensor_operation::host::
    ReferenceConvWrw<InDataType, WeiDataType, OutDataType, InElementOp, WeiElementOp, OutElementOp>;

int main(int argc, char* argv[])
{
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;
ltqin's avatar
ltqin committed
81
    int do_log           = 0;
ltqin's avatar
ltqin committed
82
    int split_k          = 4;
ltqin's avatar
ltqin committed
83
84
85
86

    // Conv shape
    ck::index_t N               = 128;
    ck::index_t K               = 256;
ltqin's avatar
ltqin committed
87
    ck::index_t C               = 1024;
ltqin's avatar
ltqin committed
88
89
    ck::index_t Y               = 3;
    ck::index_t X               = 3;
ltqin's avatar
ltqin committed
90
91
    ck::index_t Hi              = 14;
    ck::index_t Wi              = 14;
ltqin's avatar
ltqin committed
92
93
94
95
    ck::index_t conv_stride_h   = 2;
    ck::index_t conv_stride_w   = 2;
    ck::index_t conv_dilation_h = 1;
    ck::index_t conv_dilation_w = 1;
ltqin's avatar
ltqin committed
96
97
98
99
    ck::index_t in_left_pad_h   = 0;
    ck::index_t in_left_pad_w   = 0;
    ck::index_t in_right_pad_h  = 0;
    ck::index_t in_right_pad_w  = 0;
ltqin's avatar
ltqin committed
100

ltqin's avatar
ltqin committed
101
    if(argc == 6)
ltqin's avatar
ltqin committed
102
103
104
105
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
ltqin's avatar
ltqin committed
106
        do_log          = std::stoi(argv[4]);
ltqin's avatar
ltqin committed
107
        split_k         = std::stoi(argv[5]);
ltqin's avatar
ltqin committed
108
    }
ltqin's avatar
ltqin committed
109
    else if(argc == 21)
ltqin's avatar
ltqin committed
110
111
112
113
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
ltqin's avatar
ltqin committed
114
        do_log          = std::stoi(argv[4]);
ltqin's avatar
ltqin committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        split_k         = std::stoi(argv[5]);

        N               = std::stoi(argv[6]);
        K               = std::stoi(argv[7]);
        C               = std::stoi(argv[8]);
        Y               = std::stoi(argv[9]);
        X               = std::stoi(argv[10]);
        Hi              = std::stoi(argv[11]);
        Wi              = std::stoi(argv[12]);
        conv_stride_h   = std::stoi(argv[13]);
        conv_stride_w   = std::stoi(argv[14]);
        conv_dilation_h = std::stoi(argv[15]);
        conv_dilation_w = std::stoi(argv[16]);
        in_left_pad_h   = std::stoi(argv[17]);
        in_left_pad_w   = std::stoi(argv[18]);
        in_right_pad_h  = std::stoi(argv[19]);
        in_right_pad_w  = std::stoi(argv[20]);
ltqin's avatar
ltqin committed
132
133
134
135
136
137
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
ltqin's avatar
ltqin committed
138
        printf("arg4: is show log (0=no, 1=yes)\n");
ltqin's avatar
ltqin committed
139
140
141
        printf("arg5: split-k \n");
        printf("arg6 to 19: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
ltqin's avatar
ltqin committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        exit(0);
    }

    const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
    const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;

    const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
    const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;

    const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
    const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
    const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
    const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};

    // tensor layout
    auto f_host_tensor_descriptor = [](std::size_t N_,
                                       std::size_t C_,
                                       std::size_t H,
                                       std::size_t W,
                                       auto layout) {
        if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
                     ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
                     ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                        std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
        }
        else if constexpr(ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::NHWC>::value ||
                          ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::KYXC>::value ||
                          ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::NHWK>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                        std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
        }
    };

    Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
    Tensor<WeiDataType> wei_k_c_y_x_host_result(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
ltqin's avatar
ltqin committed
183
184
185
    Tensor<WeiDataType> wei_k_c_y_x_device_result(
        f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
    Tensor<OutDataType> out_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
ltqin's avatar
ltqin committed
186
187
188
189
190
191
192
193
194
195

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
    std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_host_result.mDesc << std::endl;
    std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
ltqin's avatar
ltqin committed
196
        out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
ltqin's avatar
ltqin committed
197
198
        break;
    default:
ltqin's avatar
ltqin committed
199
200
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1});
        out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
ltqin's avatar
ltqin committed
201
    }
ltqin's avatar
ltqin committed
202
    wei_k_c_y_x_device_result.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{0});
ltqin's avatar
ltqin committed
203
204

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
ltqin's avatar
ltqin committed
205
206
207
    DeviceMem wei_device_buf(sizeof(WeiDataType) *
                             wei_k_c_y_x_device_result.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());
ltqin's avatar
ltqin committed
208
209
210

    in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
    out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
ltqin's avatar
ltqin committed
211
    wei_device_buf.ToDevice(wei_k_c_y_x_device_result.mData.data());
ltqin's avatar
ltqin committed
212
213

    // do GEMM
ltqin's avatar
ltqin committed
214
    auto conv     = DeviceConvWrWInstance{};
ltqin's avatar
ltqin committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    auto invoker  = conv.MakeInvoker();
    auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                      static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                                      static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                                      N,
                                      K,
                                      C,
                                      std::vector<ck::index_t>{{Hi, Wi}},
                                      std::vector<ck::index_t>{{Y, X}},
                                      std::vector<ck::index_t>{{Ho, Wo}},
                                      conv_filter_strides,
                                      conv_filter_dilations,
                                      input_left_pads,
                                      input_right_pads,
                                      InElementOp{},
                                      WeiElementOp{},
ltqin's avatar
ltqin committed
231
232
                                      OutElementOp{},
                                      split_k);
ltqin's avatar
ltqin committed
233
234
235

    if(!conv.IsSupportedArgument(argument))
    {
ltqin's avatar
ltqin committed
236
237
238
239
        std::cout << "wrong! device_conv with the specified compilation parameters does "
                     "not support this Conv problem"
                  << std::endl;
        return 1;
ltqin's avatar
ltqin committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;

    std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
                            sizeof(WeiDataType) * (K * C * Y * X) +
                            sizeof(OutDataType) * (N * K * Ho * Wo);

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    if(do_verification)
    {
        auto ref_conv    = ReferenceConvWrwInstance{};
        auto ref_invoker = ref_conv.MakeInvoker();

        auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
                                                  wei_k_c_y_x_host_result,
                                                  out_n_k_ho_wo,
                                                  conv_filter_strides,
                                                  conv_filter_dilations,
                                                  input_left_pads,
                                                  input_right_pads,
                                                  InElementOp{},
                                                  WeiElementOp{},
                                                  OutElementOp{});

        ref_invoker.Run(ref_argument);

        wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data());

ltqin's avatar
ltqin committed
277
        if(do_log)
ltqin's avatar
ltqin committed
278
279
280
281
282
283
284
285
286
        {
            LogRangeAsType<float>(std::cout << "out: ", out_n_k_ho_wo.mData, ",") << std::endl;
            LogRangeAsType<float>(std::cout << "in : ", in_n_c_hi_wi.mData, ",") << std::endl;
            LogRangeAsType<float>(
                std::cout << "wei_device(after): ", wei_k_c_y_x_device_result.mData, ",")
                << std::endl;
            LogRangeAsType<float>(std::cout << "wei_host  : ", wei_k_c_y_x_host_result.mData, ",")
                << std::endl;
        }
ltqin's avatar
ltqin committed
287
288
289
        check_error(wei_k_c_y_x_host_result, wei_k_c_y_x_device_result);
    }
}