host_conv.hpp 20.8 KB
Newer Older
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2
#include "host_tensor.hpp"
3

Jing Zhang's avatar
Jing Zhang committed
4
5
6
7
8
9
10
11
12
13
14
15
template <typename T>
inline auto activ(T v, const ck::index_t activ_type)
{
    switch(activ_type)
    {
    case 0: return v;
    case 1: return (v >= 0 ? v : 0);
    case 2: return (1 / (1 + exp(-v)));
    default: throw std::runtime_error("unsupported activ type"); break;
    }
}

zjing14's avatar
zjing14 committed
16
17
18
19
20
21
22
template <typename TIn,
          typename TWei,
          typename TOut,
          typename ConvStrides,
          typename ConvDilations,
          typename InLeftPads,
          typename InRightPads>
23
24
25
26
27
28
void host_direct_convolution(const Tensor<TIn>& in,
                             const Tensor<TWei>& wei,
                             Tensor<TOut>& out,
                             const ConvStrides& conv_strides,
                             const ConvDilations& conv_dilations,
                             const InLeftPads& in_left_pads,
Chao Liu's avatar
tidy  
Chao Liu committed
29
                             const InRightPads&,
Jing Zhang's avatar
Jing Zhang committed
30
31
                             const ConvTensorLayout layout = ConvTensorLayout::NCHW,
                             const ck::index_t activ_type  = 0)
32
33
34
{
    using namespace ck;

35
36
    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
37

38
    auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
39
        double v = 0;
40
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
41
        {
42
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
43
            {
44
45
                int hi = ho * conv_strides[I0] + y * conv_dilations[I0] - in_left_pads[I0];
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
46
                {
47
48
49
                    int wi = wo * conv_strides[I1] + x * conv_dilations[I1] - in_left_pads[I1];
                    if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in.mDesc.GetLengths()[3])
50
                    {
51
52
                        v += static_cast<const double>(in(n, c, hi, wi)) *
                             static_cast<const double>(wei(k, c, y, x));
53
54
55
56
                    }
                }
            }
        }
Jing Zhang's avatar
Jing Zhang committed
57
        out(n, k, ho, wo) = activ(v, activ_type);
58
59
    };

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    auto f_nhwc = [&](auto n, auto ho, auto wo, auto k) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[3]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[1]; ++y)
            {
                int hi = ho * conv_strides[I0] + y * conv_dilations[I0] - in_left_pads[I0];
                for(int x = 0; x < wei.mDesc.GetLengths()[2]; ++x)
                {
                    int wi = wo * conv_strides[I1] + x * conv_dilations[I1] - in_left_pads[I1];
                    if(hi >= 0 && hi < in.mDesc.GetLengths()[1] && wi >= 0 &&
                       wi < in.mDesc.GetLengths()[2])
                    {
                        v += static_cast<const double>(in(n, hi, wi, c)) *
                             static_cast<const double>(wei(k, y, x, c));
                    }
                }
            }
        }
Jing Zhang's avatar
Jing Zhang committed
79
        out(n, ho, wo, k) = activ(v, activ_type);
80
    };
81

Chao Liu's avatar
tidy  
Chao Liu committed
82
    if(layout == ConvTensorLayout::NCHW)
83
84
85
86
87
88
    {
        make_ParallelTensorFunctor(f_nchw,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2],
                                   out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
Chao Liu's avatar
tidy  
Chao Liu committed
89
90
91
    }
    else if(layout == ConvTensorLayout::NHWC)
    {
92
93
94
95
96
        make_ParallelTensorFunctor(f_nhwc,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2],
                                   out.mDesc.GetLengths()[3])(std::thread::hardware_concurrency());
Chao Liu's avatar
tidy  
Chao Liu committed
97
98
99
100
    }
    else
    {
        throw std::runtime_error("wrong! not supported layout");
101
    }
102
103
}

Jing Zhang's avatar
Jing Zhang committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
template <typename TIn,
          typename TWei,
          typename TOut,
          typename ConvStrides,
          typename ConvDilations,
          typename InLeftPads,
          typename InRightPads>
void host_direct_convolution_add(const Tensor<TIn>& in,
                                 const Tensor<TWei>& wei,
                                 const Tensor<TOut>& add,
                                 Tensor<TOut>& out,
                                 const ConvStrides& conv_strides,
                                 const ConvDilations& conv_dilations,
                                 const InLeftPads& in_left_pads,
                                 const InRightPads&,
                                 const ConvTensorLayout layout = ConvTensorLayout::NCHW,
                                 const ck::index_t activ_type  = 0)
{
    using namespace ck;

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};

    auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho * conv_strides[I0] + y * conv_dilations[I0] - in_left_pads[I0];
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo * conv_strides[I1] + x * conv_dilations[I1] - in_left_pads[I1];
                    if(hi >= 0 && hi < in.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in.mDesc.GetLengths()[3])
                    {
                        v += static_cast<const double>(in(n, c, hi, wi)) *
                             static_cast<const double>(wei(k, c, y, x));
                    }
                }
            }
        }

        index_t hox2 = ho * 2;
        index_t wox2 = wo * 2;

        v = activ(v, activ_type);

        out(n, k, hox2, wox2)         = v + add(n, k, hox2, wox2);
        out(n, k, hox2, wox2 + 1)     = v + add(n, k, hox2, wox2 + 1);
        out(n, k, hox2 + 1, wox2)     = v + add(n, k, hox2 + 1, wox2);
        out(n, k, hox2 + 1, wox2 + 1) = v + add(n, k, hox2 + 1, wox2 + 1);
    };

    auto f_nhwc = [&](auto n, auto ho, auto wo, auto k) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[3]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[1]; ++y)
            {
                int hi = ho * conv_strides[I0] + y * conv_dilations[I0] - in_left_pads[I0];
                for(int x = 0; x < wei.mDesc.GetLengths()[2]; ++x)
                {
                    int wi = wo * conv_strides[I1] + x * conv_dilations[I1] - in_left_pads[I1];
                    if(hi >= 0 && hi < in.mDesc.GetLengths()[1] && wi >= 0 &&
                       wi < in.mDesc.GetLengths()[2])
                    {
                        v += static_cast<const double>(in(n, hi, wi, c)) *
                             static_cast<const double>(wei(k, y, x, c));
                    }
                }
            }
        }

        index_t hox2 = ho * 2;
        index_t wox2 = wo * 2;

        v = activ(v, activ_type);

        out(n, k, hox2, wox2)         = v + add(n, k, hox2, wox2);
        out(n, k, hox2, wox2 + 1)     = v + add(n, k, hox2, wox2 + 1);
        out(n, k, hox2 + 1, wox2)     = v + add(n, k, hox2 + 1, wox2);
        out(n, k, hox2 + 1, wox2 + 1) = v + add(n, k, hox2 + 1, wox2 + 1);
    };

    if(layout == ConvTensorLayout::NCHW)
    {
        make_ParallelTensorFunctor(f_nchw,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2] / 2,
                                   out.mDesc.GetLengths()[3] /
                                       2)(std::thread::hardware_concurrency());
    }
    else if(layout == ConvTensorLayout::NHWC)
    {
        make_ParallelTensorFunctor(f_nhwc,
                                   out.mDesc.GetLengths()[0],
                                   out.mDesc.GetLengths()[1],
                                   out.mDesc.GetLengths()[2] / 2,
                                   out.mDesc.GetLengths()[3] /
                                       2)(std::thread::hardware_concurrency());
    }
    else
    {
        throw std::runtime_error("wrong! not supported layout");
    }
}

zjing14's avatar
zjing14 committed
213
template <typename TIn, typename TWei, typename TOut, typename InLeftPads, typename InRightPads>
214
215
216
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
217
218
                                   InLeftPads,
                                   InRightPads)
219
220
221
222
223
224
{
    using namespace ck;

    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;

Chao Liu's avatar
tidy  
Chao Liu committed
225
226
    std::size_t N = in_nchw.mDesc.GetLengths()[0];
    std::size_t C = in_nchw.mDesc.GetLengths()[1];
227
228
229
230
231

    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];

Chao Liu's avatar
tidy  
Chao Liu committed
232
233
    std::size_t Ho = out_nkhw.mDesc.GetLengths()[2];
    std::size_t Wo = out_nkhw.mDesc.GetLengths()[3];
234

235
236
    index_t h_pad_low = InLeftPads{}.Get(Number<0>{});
    index_t w_pad_low = InLeftPads{}.Get(Number<1>{});
237
238
239
240

    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;

Chao Liu's avatar
tidy  
Chao Liu committed
241
242
    std::size_t HTile = (Ho + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (Wo + WoPerTile - 1) / WoPerTile;
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});

    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
        {
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
            {
                int wi = WoPerTile * wtile + i - w_pad_low;

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
                }
                else
                {
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
                }
            }
        }
    };

    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
    };

    auto f_wei_transform = [&](auto k, auto c) {
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
    };

    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
        {
            for(int i = 0; i < WiPerTile; ++i)
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
                }

                out_transform(n, k, htile, wtile, j, i) = v;
            }
        }
    };

    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
    };

    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
        {
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
            {
Chao Liu's avatar
Chao Liu committed
432
                std::size_t wo         = WoPerTile * wtile + i;
433
434
435
436
437
438
439
440
441
442
443
444
445
446
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
}