gemm.cpp 7.39 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iomanip>
#include <vector>
#include <iostream>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/tensor_operation_instance/gpu/gemm.hpp"

using F16 = ck::half_t;
using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;

using ADataType = F16;
using BDataType = F16;
using CDataType = F16;

using ALayout = Row;
using BLayout = Col;
using CLayout = Row;

struct SimpleDeviceMem
{
    SimpleDeviceMem() = delete;

    SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
    {
        (void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
    }

    void* GetDeviceBuffer() { return p_mem_; }

    ~SimpleDeviceMem() { (void)hipFree(p_mem_); }

    void* p_mem_;
};

int main(int argc, char* argv[])
{
    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 5)
    {
        M = std::stoi(argv[1]);
        N = std::stoi(argv[2]);
        K = std::stoi(argv[3]);

        StrideA = std::stoi(argv[4]);
        StrideB = std::stoi(argv[5]);
        StrideC = std::stoi(argv[6]);
    }
    else
    {
        printf("arg1 to 6: M, N, K, StrideA, StrideB, StrideC\n");
        exit(0);
    }

    auto f_matrix_space_size =
        [](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
            using Layout = decltype(layout);

            if(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
            {
                return (nRow - 1) * stride + nCol;
            }
            else
            {
                return (nCol - 1) * stride + nRow;
            }
        };

    SimpleDeviceMem a_device_buf(sizeof(ADataType) * f_matrix_space_size(M, K, StrideA, ALayout{}));
    SimpleDeviceMem b_device_buf(sizeof(BDataType) * f_matrix_space_size(K, N, StrideB, BLayout{}));
    SimpleDeviceMem c_device_buf(sizeof(CDataType) * f_matrix_space_size(M, N, StrideC, CLayout{}));

    using DeviceOp =
        ck::tensor_operation::device::DeviceGemm<ALayout,
                                                 BLayout,
                                                 CLayout,
                                                 ADataType,
                                                 BDataType,
                                                 CDataType,
                                                 ck::tensor_operation::element_wise::PassThrough,
                                                 ck::tensor_operation::element_wise::PassThrough,
                                                 ck::tensor_operation::element_wise::PassThrough>;

    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    std::string best_op_name;
    bool found            = false;
    int best_op_id        = -1;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device operation instances
    std::cout << "Run all instances and do timing" << std::endl;

    for(int i = 0; i < op_ptrs.size(); ++i)
    {
        auto& op_ptr = op_ptrs[i];

        auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
                                                        b_device_buf.GetDeviceBuffer(),
                                                        c_device_buf.GetDeviceBuffer(),
                                                        M,
                                                        N,
                                                        K,
                                                        StrideA,
                                                        StrideB,
                                                        StrideC,
                                                        a_element_op,
                                                        b_element_op,
                                                        c_element_op);

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        std::string op_name = op_ptr->GetTypeString();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});

            std::size_t flop = std::size_t(2) * M * N * K;

            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << op_name << std::endl;

            if(tflops > best_tflops)
            {
                found           = true;
                best_op_id      = i;
                best_op_name    = op_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }
        }
        else
        {
            std::cout << op_name << " does not support this problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;

    // run the best intance
    {
        auto& op_ptr = op_ptrs[best_op_id];

        std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
                  << std::endl;

        auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
                                                        b_device_buf.GetDeviceBuffer(),
                                                        c_device_buf.GetDeviceBuffer(),
                                                        M,
                                                        N,
                                                        K,
                                                        StrideA,
                                                        StrideB,
                                                        StrideC,
                                                        a_element_op,
                                                        b_element_op,
                                                        c_element_op);

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
        }

        std::cout << "Done" << std::endl;
    }

    return 0;
}