gemm_standalone_xdl_fp16.cpp 7.92 KB
Newer Older
Anthony Chang's avatar
Anthony Chang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include "gemm_util.hpp"

#include "ck/library/utility/fill.hpp"

#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"

#include "gemm_f16_nn_instance.hpp"
#include "gemm_f16_nt_instance.hpp"
#include "gemm_f16_tn_instance.hpp"
#include "gemm_f16_tt_instance.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

22
using PassThrough      = ck::tensor_operation::element_wise::PassThrough;
Anthony Chang's avatar
Anthony Chang committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
using F16              = ck::half_t;
using ADataType        = F16;
using BDataType        = F16;
using AccDataType      = float;
using CShuffleDataType = float;
using CDataType        = F16;

using ALayout = Row;
using BLayout = Col;
using CLayout = Row;

using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;

using ReferenceGemmInstance = ck::tensor_operation::host::
    ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;

41
using ck::gemm_util::GemmParams;
Anthony Chang's avatar
Anthony Chang committed
42
using ck::tensor_operation::device::BaseOperator;
43
44
using ck::tensor_operation::device::DeviceGemm;
using namespace ck::tensor_operation::device::instance;
Anthony Chang's avatar
Anthony Chang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

using DeviceGemmNN =
    DeviceGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>;
using DeviceGemmNT =
    DeviceGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>;
using DeviceGemmTN =
    DeviceGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>;
using DeviceGemmTT =
    DeviceGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>;

struct LayoutConfig
{
    bool ARowMajor;
    bool BRowMajor;
    bool CRowMajor;
};

int main(int argc, char* argv[])
{
    // Class DeviceGemm is templated by layout and precision types so it is not an option to contain
    // them in a single vector. Instead we use abstract BaseOperator class and dynamic_cast() it
    // upon invocation.
    // And since DeviceGemm does not expose template arg information, an extra book keeping class
    // LayoutConfig is used for determining which type a BaseOperator instance should be cast to.
    using OpFactoryFn = void (*)(std::vector<std::unique_ptr<BaseOperator>>&);

71
    std::vector<std::tuple<GemmParams, LayoutConfig, OpFactoryFn>> problems = {
Anthony Chang's avatar
Anthony Chang committed
72
73
        // clang-format off
    // 104 tiles
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    {GemmParams{2048, 3328, 4096, -1, -1, -1}, LayoutConfig{false, false, true}, add_gemm_f16_nn_256x256},
    {GemmParams{2048, 1664, 4096, -1, -1, -1}, LayoutConfig{false, false, true}, add_gemm_f16_nn_256x128},
    {GemmParams{1024, 1664, 4096, -1, -1, -1}, LayoutConfig{false, false, true}, add_gemm_f16_nn_128x128},
    {GemmParams{1024,  832, 4096, -1, -1, -1}, LayoutConfig{false, false, true}, add_gemm_f16_nn_128x64},
    {GemmParams{2048, 3328, 4096, -1, -1, -1}, LayoutConfig{false, true, true}, add_gemm_f16_nt_256x256},
    {GemmParams{2048, 1664, 4096, -1, -1, -1}, LayoutConfig{false, true, true}, add_gemm_f16_nt_256x128},
    {GemmParams{1024, 1664, 4096, -1, -1, -1}, LayoutConfig{false, true, true}, add_gemm_f16_nt_128x128},
    {GemmParams{1024,  832, 4096, -1, -1, -1}, LayoutConfig{false, true, true}, add_gemm_f16_nt_128x64},
    {GemmParams{2048, 3328, 4096, -1, -1, -1}, LayoutConfig{true, false, true}, add_gemm_f16_tn_256x128},
    {GemmParams{2048, 1664, 4096, -1, -1, -1}, LayoutConfig{true, false, true}, add_gemm_f16_tn_256x128},
    {GemmParams{1024, 1664, 4096, -1, -1, -1}, LayoutConfig{true, false, true}, add_gemm_f16_tn_128x128},
    {GemmParams{1024,  832, 4096, -1, -1, -1}, LayoutConfig{true, false, true}, add_gemm_f16_tn_128x64},
    {GemmParams{2048, 3328, 4096, -1, -1, -1}, LayoutConfig{true, true, true}, add_gemm_f16_tt_256x256},
    {GemmParams{2048, 1664, 4096, -1, -1, -1}, LayoutConfig{true, true, true}, add_gemm_f16_tt_256x128},
    {GemmParams{1024, 1664, 4096, -1, -1, -1}, LayoutConfig{true, true, true}, add_gemm_f16_tt_128x128},
    {GemmParams{1024,  832, 4096, -1, -1, -1}, LayoutConfig{true, true, true}, add_gemm_f16_tt_128x64},
Anthony Chang's avatar
Anthony Chang committed
90
    // 110 tiles
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    {GemmParams{2560, 2816, 4096, -1, -1, -1}, LayoutConfig{false, false, true}, add_gemm_f16_nn_256x256},
    {GemmParams{2560, 1408, 4096, -1, -1, -1}, LayoutConfig{false, false, true}, add_gemm_f16_nn_256x128},
    {GemmParams{1280, 1408, 4096, -1, -1, -1}, LayoutConfig{false, false, true}, add_gemm_f16_nn_128x128},
    {GemmParams{1280,  704, 4096, -1, -1, -1}, LayoutConfig{false, false, true}, add_gemm_f16_nn_128x64},
    {GemmParams{2560, 2816, 4096, -1, -1, -1}, LayoutConfig{false, true, true}, add_gemm_f16_nt_256x256},
    {GemmParams{2560, 1408, 4096, -1, -1, -1}, LayoutConfig{false, true, true}, add_gemm_f16_nt_256x128},
    {GemmParams{1280, 1408, 4096, -1, -1, -1}, LayoutConfig{false, true, true}, add_gemm_f16_nt_128x128},
    {GemmParams{1280,  704, 4096, -1, -1, -1}, LayoutConfig{false, true, true}, add_gemm_f16_nt_128x64},
    {GemmParams{2560, 2816, 4096, -1, -1, -1}, LayoutConfig{true, false, true}, add_gemm_f16_tn_256x128},
    {GemmParams{2560, 1408, 4096, -1, -1, -1}, LayoutConfig{true, false, true}, add_gemm_f16_tn_256x128},
    {GemmParams{1280, 1408, 4096, -1, -1, -1}, LayoutConfig{true, false, true}, add_gemm_f16_tn_128x128},
    {GemmParams{1280,  704, 4096, -1, -1, -1}, LayoutConfig{true, false, true}, add_gemm_f16_tn_128x64},
    {GemmParams{2560, 2816, 4096, -1, -1, -1}, LayoutConfig{true, true, true}, add_gemm_f16_tt_256x256},
    {GemmParams{2560, 1408, 4096, -1, -1, -1}, LayoutConfig{true, true, true}, add_gemm_f16_tt_256x128},
    {GemmParams{1280, 1408, 4096, -1, -1, -1}, LayoutConfig{true, true, true}, add_gemm_f16_tt_128x128},
    {GemmParams{1280,  704, 4096, -1, -1, -1}, LayoutConfig{true, true, true}, add_gemm_f16_tt_128x64},
Anthony Chang's avatar
Anthony Chang committed
107
108
109
        // clang-format on
    };

110
111
    bool do_verification = true;
    bool time_kernel     = true;
Anthony Chang's avatar
Anthony Chang committed
112

113
114
115
116
117
118
119
120
121
122
    if(argc == 1)
    {
        // use default
    }
    else if(argc == 3)
    {
        do_verification = std::stoi(argv[1]);
        time_kernel     = std::stoi(argv[2]);
    }
    else
Anthony Chang's avatar
Anthony Chang committed
123
    {
124
125
        std::cerr << "arg1: verification (0=no, 1=yes)" << std::endl
                  << "arg2: time kernel (0=no, 1=yes)" << std::endl;
Anthony Chang's avatar
Anthony Chang committed
126
127
128
129
    }

    for(auto& p : problems)
    {
130
        GemmParams& problem_size          = std::get<0>(p);
Anthony Chang's avatar
Anthony Chang committed
131
132
133
134
135
        const LayoutConfig& layout_config = std::get<1>(p);
        const auto& factory               = std::get<2>(p);
        std::vector<std::unique_ptr<BaseOperator>> ops;
        factory(ops);

136
137
138
139
        problem_size.StrideA = layout_config.ARowMajor ? problem_size.K : problem_size.M;
        problem_size.StrideB = layout_config.BRowMajor ? problem_size.N : problem_size.K;
        problem_size.StrideC = layout_config.CRowMajor ? problem_size.N : problem_size.M;

Anthony Chang's avatar
Anthony Chang committed
140
141
142
        if(!layout_config.ARowMajor && !layout_config.BRowMajor)
        {
            auto op_ptr = dynamic_cast<DeviceGemmNN*>(ops[0].get());
143
144
            ck::gemm_util::TestGemm<AccDataType>{}(
                op_ptr, problem_size, do_verification, time_kernel);
Anthony Chang's avatar
Anthony Chang committed
145
146
147
148
        }
        else if(!layout_config.ARowMajor && layout_config.BRowMajor)
        {
            auto op_ptr = dynamic_cast<DeviceGemmNT*>(ops[0].get());
149
150
            ck::gemm_util::TestGemm<AccDataType>{}(
                op_ptr, problem_size, do_verification, time_kernel);
Anthony Chang's avatar
Anthony Chang committed
151
152
153
154
        }
        else if(layout_config.ARowMajor && !layout_config.BRowMajor)
        {
            auto op_ptr = dynamic_cast<DeviceGemmTN*>(ops[0].get());
155
156
            ck::gemm_util::TestGemm<AccDataType>{}(
                op_ptr, problem_size, do_verification, time_kernel);
Anthony Chang's avatar
Anthony Chang committed
157
158
159
160
        }
        else if(layout_config.ARowMajor && layout_config.BRowMajor)
        {
            auto op_ptr = dynamic_cast<DeviceGemmTT*>(ops[0].get());
161
162
            ck::gemm_util::TestGemm<AccDataType>{}(
                op_ptr, problem_size, do_verification, time_kernel);
Anthony Chang's avatar
Anthony Chang committed
163
164
165
166
167
        }
    }

    return 0;
}