"tests/vscode:/vscode.git/clone" did not exist on "436e523bf1616bea22a1df78d93d7522311dccc8"
gemm_xdl_fp16.cpp 12.2 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
5
6
7
8
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
root's avatar
root committed
9
10
11
12
13
14
15
16
17
18
19
20

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_waveletmodel_cshuffle.hpp"

#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
Chao Liu's avatar
Chao Liu committed
21

Chao Liu's avatar
Chao Liu committed
22
23
24
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

Chao Liu's avatar
Chao Liu committed
25
26
27
28
29
30
31
32
using F16 = ck::half_t;
using F32 = float;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

33
34
35
36
37
using ADataType        = F16;
using BDataType        = F16;
using AccDataType      = F32;
using CShuffleDataType = F32;
using CDataType        = F16;
Chao Liu's avatar
Chao Liu committed
38

39
40
41
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
Chao Liu's avatar
Chao Liu committed
42

43
44
45
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
Chao Liu's avatar
Chao Liu committed
46

47
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
Chao Liu's avatar
Chao Liu committed
48

Chao Liu's avatar
Chao Liu committed
49
// clang-format off
Chao Liu's avatar
Chao Liu committed
50
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
Chao Liu's avatar
Chao Liu committed
51
52
53
54
55
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
//######|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        <     Row,     Col,     Row,   F16,   F16,   F16,     F32,      F32,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,   256,   256,   128,    32,   8,   8,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,         1,           1,           1,               S<1, 32, 1, 8>,               8>;
56
57

using DeviceGemmInstance_WaveletModel = ck::tensor_operation::device::DeviceGemm_Xdl_WaveletModel_CShuffle
58
59
60
//######| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle|           A|           B|           C|           GEMM| NumGemmK| ABBlockTransfer|       BlockGemm|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
//######|        |        |        |  Type|  Type|  Type|    Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| ThreadGroupSize| ThreadGroupSize| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
//######|        |        |        |      |      |      |        |         |   Operation|   Operation|   Operation|               |    Stage|                |                |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
61
62
//######|        |        |        |      |      |      |        |         |            |            |            |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |               |          |            |            |                             |                |
        <     Row,     Col,     Row,   F16,   F16,   F16,     F32,      F16,  AElementOp,  BElementOp,  CElementOp,    GemmDefault,        1,             256,             256,   256,   128,    32,   8,   8,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              8,              8,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              8,              8,         1,           1,           1,               S<1, 32, 1,8>,                8>;
Chao Liu's avatar
Chao Liu committed
63
64
// clang-format on

Chao Liu's avatar
Chao Liu committed
65
using ReferenceGemmInstance = ck::tensor_operation::host::
66
    ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
67
68
69

int main(int argc, char* argv[])
{
JD's avatar
JD committed
70
71
72
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;
73
74
75
76
77
78
79
80
81
82

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

83
84
85
86
87
    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 4)
Chao Liu's avatar
Chao Liu committed
88
    {
89
90
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
JD's avatar
JD committed
91
        time_kernel     = std::stoi(argv[3]);
Chao Liu's avatar
Chao Liu committed
92
93
94
95
96
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
JD's avatar
JD committed
97
        time_kernel     = std::stoi(argv[3]);
Chao Liu's avatar
Chao Liu committed
98
99
100
101

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);
102

Chao Liu's avatar
Chao Liu committed
103
104
105
106
107
108
109
110
        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
111
        printf("arg3: time kernel (0=no, 1=yes)\n");
Chao Liu's avatar
Chao Liu committed
112
113
114
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
132
133
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
134
135
136
137
138
139
140
141
142

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
143
144
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
145
        break;
146
    case 2:
147
148
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
149
150
151
152
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
153
154
155
156
157
158
159
160
161
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

Chao Liu's avatar
Chao Liu committed
162
163
164
165
    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

166
    // do GEMM
root's avatar
root committed
167
168
    // replace DeviceGemmInstance_WaveletModel for wavelet gemm pipeline
    // auto gemm     = DeviceGemmInstance_WaveletModel{};
Chao Liu's avatar
Chao Liu committed
169
    auto gemm     = DeviceGemmInstance{};
170
171
172
173
174
175
176
177
178
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
Chao Liu's avatar
Chao Liu committed
179
                                      StrideC,
Chao Liu's avatar
Chao Liu committed
180
181
182
                                      a_element_op,
                                      b_element_op,
                                      c_element_op);
183
184
185

    if(!gemm.IsSupportedArgument(argument))
    {
Chao Liu's avatar
Chao Liu committed
186
187
188
        std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

        return 0;
189
190
    }

JD's avatar
JD committed
191
    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
192
193
194

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
Chao Liu's avatar
Chao Liu committed
195
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
196
197
198
199
200

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

Chao Liu's avatar
Chao Liu committed
201
202
    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;
203
204
205
206
207

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
208
209
210
211
212
213
214
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
215

Anthony Chang's avatar
Anthony Chang committed
216
        return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
217
    }
Jianfeng Yan's avatar
Jianfeng Yan committed
218
219

    return 0;
220
}