"vscode:/vscode.git/clone" did not exist on "dd7af4d4d94797229ea49eb03adc1fb3375d5ef1"
fmha_fwd_kernel.hpp 9.08 KB
Newer Older
carlushuang's avatar
carlushuang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include "ck/utility/common_header.hpp"
#include "ck/tensor/tensor_view.hpp"
#include "ck/tile_program/tile/tile_window.hpp"

// S[seqlen_q, seqlen_k] = Q[seqlen_q, hdim_q] * K[seqlen_k, hdim_q]
// P[seqlen_q, seqlen_k] = Softmax(S[seqlen_q, seqlen_k])
// O[seqlen_q, hdim_v] = P[seqlen_q, seqlen_k] * V[hdim_v, seqlen_k]

14
#define C_LOG2E 1.44269504088896340736 // log2(e)
15
16

template <typename TilePartitioner_, typename FmhaPipeline_, typename EpiloguePipeline_>
carlushuang's avatar
carlushuang committed
17
18
struct FmhaFwdKernel
{
19
    using TilePartitioner                   = ck::remove_cvref_t<TilePartitioner_>;
carlushuang's avatar
carlushuang committed
20
21
22
23
24
25
26
27
28
    using FmhaPipeline                      = ck::remove_cvref_t<FmhaPipeline_>;
    using EpiloguePipeline                  = ck::remove_cvref_t<EpiloguePipeline_>;
    static constexpr ck::index_t kBlockSize = FmhaPipeline::kBlockSize;

    using QDataType = ck::remove_cvref_t<typename FmhaPipeline::QDataType>;
    using KDataType = ck::remove_cvref_t<typename FmhaPipeline::KDataType>;
    using VDataType = ck::remove_cvref_t<typename FmhaPipeline::VDataType>;
    using ODataType = ck::remove_cvref_t<typename FmhaPipeline::ODataType>;

carlushuang's avatar
carlushuang committed
29
30
    using VLayout = ck::remove_cvref_t<typename FmhaPipeline::VLayout>;

carlushuang's avatar
carlushuang committed
31
32
33
34
35
36
37
38
39
40
    struct Kargs
    {
        const void* q_ptr;
        const void* k_ptr;
        const void* v_ptr;
        void* o_ptr;
        ck::index_t seqlen_q;
        ck::index_t seqlen_k;
        ck::index_t hdim_q;
        ck::index_t hdim_v;
41
42
43

        float scale;

carlushuang's avatar
carlushuang committed
44
45
46
47
        ck::index_t stride_q;
        ck::index_t stride_k;
        ck::index_t stride_v;
        ck::index_t stride_o;
48
49
50
51
52
53

        ck::index_t nhead_stride_q;
        ck::index_t nhead_stride_k;
        ck::index_t nhead_stride_v;
        ck::index_t nhead_stride_o;

carlushuang's avatar
carlushuang committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        ck::index_t batch_stride_q;
        ck::index_t batch_stride_k;
        ck::index_t batch_stride_v;
        ck::index_t batch_stride_o;
    };

    __host__ static constexpr Kargs MakeKargs(const void* q_ptr,
                                              const void* k_ptr,
                                              const void* v_ptr,
                                              void* o_ptr,
                                              ck::index_t seqlen_q,
                                              ck::index_t seqlen_k,
                                              ck::index_t hdim_q,
                                              ck::index_t hdim_v,
68
                                              float scale,
carlushuang's avatar
carlushuang committed
69
70
71
72
                                              ck::index_t stride_q,
                                              ck::index_t stride_k,
                                              ck::index_t stride_v,
                                              ck::index_t stride_o,
73
74
75
76
                                              ck::index_t nhead_stride_q,
                                              ck::index_t nhead_stride_k,
                                              ck::index_t nhead_stride_v,
                                              ck::index_t nhead_stride_o,
carlushuang's avatar
carlushuang committed
77
78
79
80
81
                                              ck::index_t batch_stride_q,
                                              ck::index_t batch_stride_k,
                                              ck::index_t batch_stride_v,
                                              ck::index_t batch_stride_o)
    {
82
83
84
85
        return Kargs{q_ptr,          k_ptr,          v_ptr,          o_ptr,          seqlen_q,
                     seqlen_k,       hdim_q,         hdim_v,         scale,          stride_q,
                     stride_k,       stride_v,       stride_o,       nhead_stride_q, nhead_stride_k,
                     nhead_stride_v, nhead_stride_o, batch_stride_q, batch_stride_k, batch_stride_v,
carlushuang's avatar
carlushuang committed
86
87
88
                     batch_stride_o};
    }

89
90
91
92
    __host__ static constexpr auto GridSize(ck::index_t batch_size_,
                                            ck::index_t nhead_,
                                            ck::index_t seqlen_q_,
                                            ck::index_t hdim_v_)
carlushuang's avatar
carlushuang committed
93
    {
94
        return TilePartitioner::GridSize(batch_size_, nhead_, seqlen_q_, hdim_v_);
carlushuang's avatar
carlushuang committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    }

    __host__ static constexpr auto BlockSize() { return dim3(kBlockSize); }

    __host__ __device__ static constexpr ck::index_t GetSmemSize()
    {
        return ck::math::max(FmhaPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
    }

    __device__ void operator()(Kargs kargs) const
    {
        using namespace ck;
        using namespace ck::tile_program;
        using namespace ck::tile_program::block;

        // allocate LDS
        __shared__ char smem_ptr[GetSmemSize()];

        // divide problem
114
115
        const auto [i_tile_m, i_tile_n, i_nhead, i_batch] =
            TilePartitioner{}(kargs.seqlen_q, kargs.hdim_v);
carlushuang's avatar
carlushuang committed
116

117
118
        const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile_m * FmhaPipeline::kM0);
        const index_t i_n1 = __builtin_amdgcn_readfirstlane(i_tile_n * FmhaPipeline::kN1);
carlushuang's avatar
carlushuang committed
119
120

        // for simplicity, batch stride we just modify the pointer
121
122
123
124
125
126
127
128
        const QDataType* q_ptr = reinterpret_cast<const QDataType*>(kargs.q_ptr) +
                                 i_nhead * kargs.nhead_stride_q + i_batch * kargs.batch_stride_q;
        const KDataType* k_ptr = reinterpret_cast<const KDataType*>(kargs.k_ptr) +
                                 i_nhead * kargs.nhead_stride_k + i_batch * kargs.batch_stride_k;
        const VDataType* v_ptr = reinterpret_cast<const VDataType*>(kargs.v_ptr) +
                                 i_nhead * kargs.nhead_stride_v + i_batch * kargs.batch_stride_v;
        ODataType* o_ptr = reinterpret_cast<ODataType*>(kargs.o_ptr) +
                           i_nhead * kargs.nhead_stride_o + i_batch * kargs.batch_stride_o;
carlushuang's avatar
carlushuang committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

        // Q/K/V DRAM and DRAM window
        const auto q_dram = make_naive_tensor_view<AddressSpaceEnum::Global>(
            q_ptr,
            make_tuple(kargs.seqlen_q, kargs.hdim_q),
            make_tuple(kargs.stride_q, 1),
            Number<32>{},
            Number<1>{});

        const auto k_dram = make_naive_tensor_view<AddressSpaceEnum::Global>(
            k_ptr,
            make_tuple(kargs.seqlen_k, kargs.hdim_q),
            make_tuple(kargs.stride_k, 1),
            Number<32>{},
            Number<1>{});

carlushuang's avatar
carlushuang committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        const auto v_dram = [&]() {
            if constexpr(ck::is_same_v<VLayout, ck::tensor_layout::gemm::RowMajor>)
            {
                const auto v_dram_tmp = make_naive_tensor_view<AddressSpaceEnum::Global>(
                    v_ptr,
                    make_tuple(kargs.seqlen_k, kargs.hdim_v),
                    make_tuple(kargs.stride_v, 1),
                    Number<32>{},
                    Number<1>{});
                return transform_tensor_view(
                    v_dram_tmp,
                    make_tuple(make_pass_through_transform(kargs.hdim_v),
                               make_pass_through_transform(kargs.seqlen_k)),
                    make_tuple(Sequence<1>{}, Sequence<0>{}),
                    make_tuple(Sequence<0>{}, Sequence<1>{}));
            }
            else
            {
                return make_naive_tensor_view<AddressSpaceEnum::Global>(
                    v_ptr,
                    make_tuple(kargs.hdim_v, kargs.seqlen_k),
                    make_tuple(kargs.stride_v, 1),
                    Number<32>{},
                    Number<1>{});
            }
        }();
carlushuang's avatar
carlushuang committed
171

172
173
174
175
176
177
178
179
180
181
        auto q_dram_window = make_tile_window(
            q_dram,
            [&]() {
                if constexpr(FmhaPipeline::kQLoadOnce)
                    return make_tuple(Number<FmhaPipeline::kM0>{},
                                      Number<FmhaPipeline::kK0BlockLength>{});
                else
                    return make_tuple(Number<FmhaPipeline::kM0>{}, Number<FmhaPipeline::kK0>{});
            }(),
            {i_m0, 0});
carlushuang's avatar
carlushuang committed
182
183
184
185
186
187
188
189
190
191
192
193

        auto k_dram_window = make_tile_window(
            k_dram, make_tuple(Number<FmhaPipeline::kN0>{}, Number<FmhaPipeline::kK0>{}), {0, 0});

        auto v_dram_window =
            make_tile_window(v_dram,
                             make_tuple(Number<FmhaPipeline::kN1>{}, Number<FmhaPipeline::kK1>{}),
                             {i_n1, 0});

        auto o_acc_tile = FmhaPipeline{}(q_dram_window,
                                         k_dram_window,
                                         v_dram_window,
194
                                         kargs.scale,
carlushuang's avatar
carlushuang committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                                         kargs.seqlen_k / FmhaPipeline::kN0,
                                         kargs.hdim_q / FmhaPipeline::kK0,
                                         smem_ptr);

        // O DRAM and O DRAM window
        auto o_dram = make_naive_tensor_view<AddressSpaceEnum::Global>(
            o_ptr,
            make_tuple(kargs.seqlen_q, kargs.hdim_v),
            make_tuple(kargs.stride_o, 1),
            Number<32>{},
            Number<1>{});

        auto o_dram_window =
            make_tile_window(o_dram,
                             make_tuple(Number<FmhaPipeline::kM0>{}, Number<FmhaPipeline::kN1>{}),
                             {i_m0, i_n1});

        EpiloguePipeline{}(o_dram_window, o_acc_tile);
    }
};