"docs/vscode:/vscode.git/clone" did not exist on "670e9f998d4a22f797fb5b2c04bc951e0a362959"
batchnorm_common.hpp 5.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <cassert>
#include <vector>
#include <array>
#include <type_traits>

#include "ck/utility/data_type.hpp"

// binary operation used to calculate invVariance from mean and meansquare
struct InvVariance
{
    InvVariance(double epsilon) : epsilon_(epsilon){};

    template <typename T>
    __host__ __device__ constexpr void operator()(T& y, const T& mean, const T& meansquare) const
    {
        static_assert(std::is_same<T, float>::value || std::is_same<T, double>::value,
                      "Data type is not supported by this operation!");

        using ck::type_convert;
        using ck::math::sqrt;

        T tmp_epsilon = type_convert<T>(epsilon_);

        y = meansquare - mean * mean;
        y = 1.0f / sqrt(tmp_epsilon + y);
    };

    double epsilon_;
};

// (4-in, 2-out) element-wise operation used to update the moving average of mean and variance
struct MovingAverage
{
    MovingAverage(double factor) : factor_(factor){};

    template <typename T>
    __host__ __device__ constexpr void operator()(T& y0,
                                                  T& y1,
                                                  const T& mean,
                                                  const T& runningMean,
                                                  const T& meansquare,
                                                  const T& runningVariance) const
    {
        static_assert(std::is_same<T, float>::value || std::is_same<T, double>::value,
                      "Data type is not supported by this operation!");

        using ck::type_convert;

        T tmp_factor = type_convert<T>(factor_);
        T variance   = meansquare - mean * mean;

        y0 = runningMean * (type_convert<T>(1.0f) - tmp_factor) + mean * tmp_factor;
        y1 = runningVariance * (type_convert<T>(1.0f) - tmp_factor) + variance * tmp_factor;
    };

    double factor_;
};

struct MovingAverageAndInvVariance
{
    MovingAverageAndInvVariance(double epsilon, double factor)
        : epsilon_(epsilon), factor_(factor){};

    template <typename T>
    __host__ __device__ constexpr void operator()(T& y0, // resultRunningMean
                                                  T& y1, // resultRunningVariance
                                                  T& y2, // saveInvVariance
                                                  const T& mean,
                                                  const T& runningMean,
                                                  const T& meansquare,
                                                  const T& runningVariance) const
    {
        static_assert(std::is_same<T, float>::value || std::is_same<T, double>::value,
                      "Data type is not supported by this operation!");

        using ck::type_convert;
        using ck::math::sqrt;

        T tmp_epsilon = type_convert<T>(epsilon_);
        T tmp_factor  = type_convert<T>(factor_);
        T variance    = meansquare - mean * mean;

        y0 = runningMean * (type_convert<T>(1.0f) - tmp_factor) + mean * tmp_factor;
        y1 = runningVariance * (type_convert<T>(1.0f) - tmp_factor) + variance * tmp_factor;

        y2 = 1.0f / sqrt(tmp_epsilon + variance);
    };

    double epsilon_;
    double factor_;
};

struct NormalizeInInfer
{
    NormalizeInInfer(double epsilon = 1e-4) : epsilon_(epsilon) {}

    template <typename T1, typename T2>
    __host__ __device__ constexpr void operator()(T1& y,
                                                  const T1& x,
                                                  const T2& mean,
                                                  const T2& variance,
                                                  const T2& gamma,
                                                  const T2& beta) const
    {
        static_assert(std::is_same<T2, float>::value || std::is_same<T2, double>::value,
                      "Data type is not supported by this operation!");

        using ck::type_convert;
        using ck::math::sqrt;

        T2 tmp_x, tmp_y;

        tmp_x = type_convert<T2>(x);

        tmp_y = ((tmp_x - mean) / sqrt(variance + type_convert<T2>(epsilon_))) * gamma + beta;
        y     = type_convert<T1>(tmp_y);
    };

    double epsilon_;
};

struct NormalizeInForward
{
    NormalizeInForward(double epsilon = 1e-4) : epsilon_(epsilon) {}

    template <typename T1, typename T2>
    __host__ __device__ constexpr void operator()(T1& y,
                                                  const T1& x,
                                                  const T2& mean,
                                                  const T2& meansquare,
                                                  const T2& gamma,
                                                  const T2& beta) const
    {
        static_assert(std::is_same<T2, float>::value || std::is_same<T2, double>::value,
                      "Data type is not supported by this operation!");

        using ck::type_convert;
        using ck::math::sqrt;

        T2 tmp_x, tmp_y;
        T2 variance = meansquare - mean * mean;

        tmp_x = type_convert<T2>(x);

        tmp_y = ((tmp_x - mean) / sqrt(variance + type_convert<T2>(epsilon_))) * gamma + beta;
        y     = type_convert<T1>(tmp_y);
    };

    double epsilon_;
};

template <int Rank, int NumReduceDim>
static inline std::array<int, Rank - NumReduceDim>
get_invariant_dims(const std::array<int, NumReduceDim>& reduceDims)
{
    int reduceFlag = 0;

    // flag the bits for the reduceDims
    for(int i = 0; i < NumReduceDim; i++)
    {
        reduceFlag |= 1 << reduceDims[i];
    };

    std::array<int, Rank - NumReduceDim> invariantDims;

    // collect invariant dimensions
    int dim = 0;
    for(int i = 0; i < Rank; i++)
        if((reduceFlag & (1 << i)) == 0)
        {
            invariantDims[dim] = i;
            dim++;
        };

    return invariantDims;
};