cpu_gemm_uk.cpp 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <string>
#include <sstream>
#include <tuple>
#include <memory>
#include <chrono>
#include "config.hpp"
#include "print.hpp"
#include "cpuid.hpp"
#include "threadwise_gemm_avx2.hpp"

#define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)   \
    ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 16, TA, TB, NT>,     \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 16, TA, TB, NT>, \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 6, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 5, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 4, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 3, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 2, 8, TA, TB, NT>,  \
        ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC, 1, 8, TA, TB, NT>

// #define ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(FA, FB, FC, TA, TB, NT)  \
//     ck::cpu::ThreadwiseGemmAvx2_MxN_6x16<FA, FB, FC,  6, 16,  TA,  TB,  NT>

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

35
template <typename ALayout, typename BLayout>
36
37
using thread_gemm_avx2_mxn_6x16_instances = std::tuple<
    // clang-format off
38
39
40
41
42
    //                                        FloatA FloatB FloatC  ALayout  BLayout NTStore
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(float, float, float, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(float, float, float, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(float, float, float, ALayout, BLayout, false),
    ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(float, float, float, ALayout, BLayout, false)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    // ITERATE_THREAD_GEMM_AVX2_MXN_6X16_INSTANCE(float, float, float,    Row,    Col, false)
    // clang-format on
    >;

void dump_cache_hierarchy()
{
    auto dump_cache_type = [&](const ck::cpu::cpuid_cache_type& type) {
        if(type == ck::cpu::cpuid_cache_type_dcache)
            printf("data cache");
        else if(type == ck::cpu::cpuid_cache_type_icache)
            printf("inst cache");
        else if(type == ck::cpu::cpuid_cache_type_unified)
            printf("unif cache");
    };
    auto dump_cache_detail = [&](const ck::cpu::cpuid_cache_detail& detail) {
        dump_cache_type(static_cast<const ck::cpu::cpuid_cache_type>(detail.type));
        printf(" size:%u, cache_line:%u, associativity:%u, sets:%u, partitions:%u, shared by "
               "procs:%u(%u)\n",
               detail.size,
               detail.cache_line_size,
               detail.associativity,
               detail.sets,
               detail.partitions,
               detail.shared_by_procs,
               detail.cores_per_socket);
    };

    ck::cpu::cpuid_cache_hierarchy cache = ck::cpu::cpuid_query_cache();
    if(cache.l1d.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1d);
    }
    if(cache.l1i.size != 0)
    {
        printf("l1 ");
        dump_cache_detail(cache.l1i);
    }
    if(cache.l2.size != 0)
    {
        printf("l2 ");
        dump_cache_detail(cache.l2);
    }
    if(cache.l3.size != 0)
    {
        printf("l3 ");
        dump_cache_detail(cache.l3);
    }
    if(cache.l4.size != 0)
    {
        printf("l4 ");
        dump_cache_detail(cache.l4);
    }
}

void* __aligned_malloc(size_t required_bytes, size_t alignment)
{
    if(alignment == 0 || (alignment & (alignment - 1))) // check pow of 2
        return nullptr;
    void* p1;  // original block
    void** p2; // aligned block
    int offset = alignment - 1 + sizeof(void*);
    if((p1 = malloc(required_bytes + offset)) == nullptr)
    {
        return nullptr;
    }
    p2     = reinterpret_cast<void**>((reinterpret_cast<size_t>(p1) + offset) & ~(alignment - 1));
    p2[-1] = p1;
    return p2;
}

void __aligned_free(void* p) { free((reinterpret_cast<void**>(p))[-1]); }

template <typename T>
void rand_vector(T* v, int elem)
{
    int i;

    static int flag = 0;
    if(!flag)
    {
        srand(time(nullptr));
        flag = 1;
    }

    for(i = 0; i < elem; i++)
    {
        v[i] = (static_cast<T>(rand() % 100)) / 100.0f;
    }
}

bool valid_vector(const float* ref, const float* rhs, uint32_t elem)
{
    float rtol   = 1e-5;
    float atol   = 1e-8;
    uint32_t err = 0;
    for(uint32_t i = 0; i < elem; i++)
    {
        float diff = std::abs(ref[i] - rhs[i]);
        if(diff > atol + rtol * std::abs(ref[i]))
        {
            printf("diff at %u, ref:%f, rhs:%f\n", i, ref[i], rhs[i]);
            err++;
        }
    }

    return err == 0;
}

template <typename data_type, typename ALayout, typename BLayout>
void ref_cpu_gemm_uk(const data_type* a,
                     const data_type* b,
                     float* c,
                     float alpha,
                     uint32_t m,
                     uint32_t n,
                     uint32_t k)
{
    auto a_offset = [&](uint32_t im, uint32_t ik) {
        if constexpr(std::is_same<Row, ALayout>::value)
        {
            return im * k + ik;
        }
        else
        {
            return ik * m + im;
        }
    };

    auto b_offset = [&](uint32_t ik, uint32_t in) {
        if constexpr(std::is_same<Row, BLayout>::value)
        {
            return ik * n + in;
        }
        else
        {
            // n*k*n8
            return (in / 8) * k * 8 + ik * 8 + in % 8;
        }
    };

    auto c_offset = [&](uint32_t im, uint32_t in) { return im * n + in; };

    for(uint32_t im = 0; im < m; im++)
    {
        for(uint32_t in = 0; in < n; in++)
        {
            float acc = .0f;
            for(uint32_t ik = 0; ik < k; ik++)
            {
                acc += a[a_offset(im, ik)] * b[b_offset(ik, in)];
            }
            acc *= alpha;
            c[c_offset(im, in)] = acc;
        }
    }
}

template <typename data_type, typename ALayout, typename BLayout, typename ukenrel_t>
void test_ukernel(ukenrel_t uk,
                  data_type* mat_a,
                  data_type* mat_b,
                  float* mat_c,
                  float alpha,
                  uint32_t m,
                  uint32_t n,
                  uint32_t k)
{
    ck::cpu::ThreadwiseGemmParam param;
    param.p_a   = mat_a;
    param.p_b   = mat_b;
    param.p_c   = mat_c;
    param.Kr    = k;
    param.lda   = (std::is_same<Row, ALayout>::value ? k : m) * sizeof(data_type);
    param.ldb   = (std::is_same<Row, BLayout>::value ? n : k * 8) * sizeof(data_type);
    param.ldc   = n * sizeof(float);
    param.alpha = alpha;

    auto invoke_uk = [&]() {
        if constexpr(std::is_same<Row, ALayout>::value && std::is_same<Row, BLayout>::value)
        {
            assert(m % uk.Mr_ == 0 && n == uk.Nr_);
            data_type* p_a = mat_a;
            float* p_c     = mat_c;
            param.p_a      = p_a;
            param.p_c      = p_c;
            for(uint32_t i_m = 0; i_m < m; i_m += uk.Mr_)
            {
                uk.Run(&param);
                p_a += uk.Mr_ * k;
                p_c += uk.Mr_ * n;
                param.p_a = p_a;
                param.p_c = p_c;
            }
        }
        else if constexpr(std::is_same<Row, ALayout>::value && std::is_same<Col, BLayout>::value)
        {
            assert(m % uk.Mr_ == 0 && n % uk.Nr_ == 0);
            data_type* p_a = mat_a;
243
244
245
246
            float* p_c     = mat_c;
            param.p_a      = p_a;
            param.p_b      = mat_b;
            param.p_c      = p_c;
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
            for(uint32_t i_m = 0; i_m < m; i_m += uk.Mr_)
            {
                float* p_c_n = p_c;
                float* p_b_n = mat_b;
                for(uint32_t i_n = 0; i_n < n; i_n += uk.Nr_)
                {
                    uk.Run(&param);
                    p_b_n += uk.Nr_ * k; // Nr_/8*k*8
                    p_c_n += uk.Nr_;
                    param.p_b = p_b_n;
                    param.p_c = p_c_n;
                }
                p_a += uk.Mr_ * k;
                p_c += uk.Mr_ * n;
                param.p_a = p_a;
                param.p_b = mat_b;
                param.p_c = p_c;
            }
        }
        else if constexpr(std::is_same<Col, ALayout>::value && std::is_same<Row, BLayout>::value)
        {
            assert(m == uk.Mr_ && n == uk.Nr_);
            uk.Run(&param);
        }
        else
        {
            assert(m % uk.Mr_ == 0 && n % uk.Nr_ == 0);
            data_type* p_b = mat_b;
            float* p_c     = mat_c;
            param.p_b      = p_b;
            param.p_c      = p_c;
            for(uint32_t i_n = 0; i_n < n; i_n += uk.Nr_)
            {
                uk.Run(&param);
                p_b += uk.Nr_ * k; // Nr_/8*k*8
                p_c += uk.Nr_;
                param.p_b = p_b;
                param.p_c = p_c;
            }
        }
    };

    printf("gemm_uk_%dx%d_%c%c: ", uk.Mr_, uk.Nr_, ALayout::name[0], BLayout::name[0]);
    fflush(stdout);
    // printf("%s: ", typeid(uk).name());fflush(stdout);
    memset(mat_c, 0, m * n * sizeof(float));

    int repeat = 7e10 / (2 * m * n * k);

    for(int i = 0; i < (repeat / 5); i++)
    {
        invoke_uk();
    }

    auto t0 = std::chrono::high_resolution_clock::now();
    for(int i = 0; i < repeat; i++)
    {
        invoke_uk();
    }
    auto t1 = std::chrono::high_resolution_clock::now();

    double us = static_cast<double>(
                    std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()) /
                repeat;
    double gflops = static_cast<double>(2 * m * n * k) * 1e-3 / us;

    memset(mat_c, 0, m * n * sizeof(float));
    invoke_uk();

    printf("m:%u, n:%u, k:%u, alpha:%f, cost:%lfus, GFLOPS:%lf, ", m, n, k, alpha, us, gflops);
    fflush(stdout);
}

// implement small ukernel on L1
template <typename data_type, typename ALayout, typename BLayout>
void test_cpu_ukernel(float alpha, uint32_t m, uint32_t n, uint32_t k)
{
    data_type* mat_a =
        reinterpret_cast<data_type*>(__aligned_malloc(m * k * sizeof(data_type), 32));
    data_type* mat_b =
        reinterpret_cast<data_type*>(__aligned_malloc(k * n * sizeof(data_type), 32));
    float* mat_c = reinterpret_cast<float*>(__aligned_malloc(m * n * sizeof(float), 32));

    float* mat_c_ref = reinterpret_cast<float*>(__aligned_malloc(m * n * sizeof(float), 32));
    memset(mat_c_ref, 0, m * n * sizeof(float));

    rand_vector(mat_a, m * k);
    rand_vector(mat_b, k * n);

    ref_cpu_gemm_uk<data_type, ALayout, BLayout>(mat_a, mat_b, mat_c_ref, alpha, m, n, k);

338
339
340
341
342
343
344
345
346
347
    using thread_gemm_instance = thread_gemm_avx2_mxn_6x16_instances<ALayout, BLayout>;
    bool found                 = false;

    ck::static_for<0, std::tuple_size_v<thread_gemm_instance>, 1>{}([&](auto i) {
        using uk_type = std::tuple_element_t<i, thread_gemm_instance>;
        // if constexpr(!std::is_same<typename uk_type::ALayout_, ALayout>::value ||
        //              !std::is_same<typename uk_type::BLayout_, BLayout>::value)
        // {
        //     return;
        // }
348
349
350
351
352
353
354
        if(m % uk_type::Mr_ != 0 || n % uk_type::Nr_ != 0)
            return;
        if((m != uk_type::Mr_ && std::is_same<typename uk_type::ALayout_, Col>::value) ||
           (n != uk_type::Nr_ && std::is_same<typename uk_type::BLayout_, Row>::value))
            // only k is the fast changing dim of A/B can we do muldiplt m, n
            return;

355
356
357
        if(found)
            return;

358
359
360
361
        test_ukernel<data_type, ALayout, BLayout>(uk_type{}, mat_a, mat_b, mat_c, alpha, m, n, k);

        bool is_valid = valid_vector(mat_c_ref, mat_c, m * n);
        printf("vald:%s\n", is_valid ? "y" : "n");
362
        found = true;
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    });

    __aligned_free(mat_a);
    __aligned_free(mat_b);
    __aligned_free(mat_c);
    __aligned_free(mat_c_ref);
}

int main(int argc, char** argv)
{
    int m       = 6;
    int n       = 16;
    int k       = 64;
    float alpha = 1.0f;
    if(argc > 3)
    {
        m = std::atoi(argv[1]);
        n = std::atoi(argv[2]);
        k = std::atoi(argv[3]);
    }
    if(argc > 4)
    {
        alpha = std::atof(argv[4]);
    }
    dump_cache_hierarchy();
    test_cpu_ukernel<float, Row, Row>(alpha, m, n, k);
    test_cpu_ukernel<float, Row, Col>(alpha, m, n, k);
    test_cpu_ukernel<float, Col, Row>(alpha, m, n, k);
    test_cpu_ukernel<float, Col, Col>(alpha, m, n, k);
}