cgemm_xdl_common.hpp 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
14
#include "ck/library/utility/literals.hpp"
15
16
17
18
19
20
21
22
23
24
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F16   = ck::half_t;
using F32   = float;
using BF16  = ck::bhalf_t;
using INT8  = std::int8_t;
using INT32 = std::int32_t;
25
26
27
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using INT4 = ck::int4_t;
#endif
28
29
30
31
32
33
34
35
36
37
38

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
          typename DeviceCGemmInstance,
39
40
41
42
43
44
45
46
47
48
49
50
51
          typename ReferenceCGemmInstance,
          typename KernelADataType = ADataType,
          typename KernelBDataType = BDataType,
          typename KernelCDataType = CDataType>
bool run_cgemm_xdl(ck::index_t M,
                   ck::index_t N,
                   ck::index_t K,
                   ck::index_t StrideA,
                   ck::index_t StrideB,
                   ck::index_t StrideC,
                   bool do_verification,
                   int init_method,
                   bool time_kernel)
52
{
53
54
55
56
57
58
59
60
61
62
63
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
    static_assert(sizeof(ck::int4_t) == sizeof(int8_t),
                  "sizeof ck::int4_t and int8_t is different!");
    static_assert(sizeof(ADataType) == sizeof(KernelADataType),
                  "sizeof ADataType and KernelADataType is different!");
    static_assert(sizeof(BDataType) == sizeof(KernelBDataType),
                  "sizeof BDataType and KernelBDataType is different!");
    static_assert(sizeof(CDataType) == sizeof(KernelCDataType),
                  "sizeof CDataType and KernelCDataType is different!");
#endif

64
65
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
66
67
            using namespace ck::literals;

68
69
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
70
                return HostTensorDescriptor({row, col}, {stride, 1_uz});
71
72
73
            }
            else
            {
74
                return HostTensorDescriptor({row, col}, {1_uz, stride});
75
76
77
78
79
80
81
            }
        };

    Tensor<ADataType> a_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<ADataType> a_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<BDataType> b_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
82
83
84
85
    Tensor<KernelCDataType> c_m_n_real_device_result(
        f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<KernelCDataType> c_m_n_imag_device_result(
        f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    std::cout << "a_m_k_real: " << a_m_k_real.mDesc << std::endl;
    std::cout << "a_m_k_imag: " << a_m_k_imag.mDesc << std::endl;
    std::cout << "b_k_n_real: " << b_k_n_real.mDesc << std::endl;
    std::cout << "b_k_n_imag: " << b_k_n_imag.mDesc << std::endl;
    std::cout << "c_m_n_real: " << c_m_n_real_device_result.mDesc << std::endl;
    std::cout << "c_m_n_imag: " << c_m_n_imag_device_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k_real.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
        a_m_k_imag.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
        b_k_n_real.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
        b_k_n_imag.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
        break;
    default:
        a_m_k_real.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
        a_m_k_imag.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
        b_k_n_real.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        b_k_n_imag.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
    }

    auto cgemm = DeviceCGemmInstance{};

112
113
114
115
116
117
118
119
120
    DeviceMem a_m_k_real_device_buf(sizeof(KernelADataType) *
                                    a_m_k_real.mDesc.GetElementSpaceSize());
    DeviceMem a_m_k_imag_device_buf(sizeof(KernelADataType) *
                                    a_m_k_imag.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_real_device_buf(sizeof(KernelBDataType) *
                                    b_k_n_real.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_imag_device_buf(sizeof(KernelBDataType) *
                                    b_k_n_imag.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_real_device_buf(sizeof(KernelCDataType) *
121
                                    c_m_n_real_device_result.mDesc.GetElementSpaceSize());
122
    DeviceMem c_m_n_imag_device_buf(sizeof(KernelCDataType) *
123
124
125
                                    c_m_n_imag_device_result.mDesc.GetElementSpaceSize());
    DeviceMem workspace_device_buf(cgemm.GetWorkspaceSize(M, N, K, StrideA, StrideB, StrideC));

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
    if constexpr(std::is_same_v<ADataType, ck::int4_t>)
    {
        Tensor<KernelADataType> a_m_k_real_converted(a_m_k_real);
        Tensor<KernelADataType> a_m_k_imag_converted(a_m_k_imag);
        Tensor<KernelBDataType> b_k_n_real_converted(b_k_n_real);
        Tensor<KernelBDataType> b_k_n_imag_converted(b_k_n_imag);

        a_m_k_real_device_buf.ToDevice(a_m_k_real_converted.mData.data());
        a_m_k_imag_device_buf.ToDevice(a_m_k_imag_converted.mData.data());
        b_k_n_real_device_buf.ToDevice(b_k_n_real_converted.mData.data());
        b_k_n_imag_device_buf.ToDevice(b_k_n_imag_converted.mData.data());
    }
    else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
    {
        a_m_k_real_device_buf.ToDevice(a_m_k_real.mData.data());
        a_m_k_imag_device_buf.ToDevice(a_m_k_imag.mData.data());
        b_k_n_real_device_buf.ToDevice(b_k_n_real.mData.data());
        b_k_n_imag_device_buf.ToDevice(b_k_n_imag.mData.data());
    }
147
148
149
150
151
152
153
154

    auto a_element_op = AElementwiseOperation{};
    auto b_element_op = BElementwiseOperation{};
    auto c_element_op = CElementwiseOperation{};

    // do GEMM
    auto invoker = cgemm.MakeInvoker();
    auto argument =
155
156
157
158
159
160
161
        cgemm.MakeArgument(static_cast<KernelADataType*>(a_m_k_real_device_buf.GetDeviceBuffer()),
                           static_cast<KernelADataType*>(a_m_k_imag_device_buf.GetDeviceBuffer()),
                           static_cast<KernelBDataType*>(b_k_n_real_device_buf.GetDeviceBuffer()),
                           static_cast<KernelBDataType*>(b_k_n_imag_device_buf.GetDeviceBuffer()),
                           static_cast<KernelCDataType*>(c_m_n_real_device_buf.GetDeviceBuffer()),
                           static_cast<KernelCDataType*>(c_m_n_imag_device_buf.GetDeviceBuffer()),
                           static_cast<KernelCDataType*>(workspace_device_buf.GetDeviceBuffer()),
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
                           M,
                           N,
                           K,
                           StrideA,
                           StrideB,
                           StrideC,
                           a_element_op,
                           b_element_op,
                           c_element_op);

    if(!cgemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_cgemm with the specified compilation parameters does "
            "not support this CGEMM problem");
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

    std::size_t flop = std::size_t(8) * M * N * K;
    std::size_t num_btype =
        std::size_t(2) *
        (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N);

186
    float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
187
188
189
190
191
192
193
194
195
196
197
198
    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << cgemm.GetTypeString() << std::endl;

    if(do_verification)
    {
        Tensor<CDataType> c_m_n_real_host_result(
            f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
        Tensor<CDataType> c_m_n_imag_host_result(
            f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

199
200
        auto ref_cgemm    = ReferenceCGemmInstance{};
        auto ref_invoker  = ref_cgemm.MakeInvoker();
201
202
203
204
205
206
207
208
209
210
211
212
        auto ref_argument = ref_cgemm.MakeArgument(a_m_k_real,
                                                   a_m_k_imag,
                                                   b_k_n_real,
                                                   b_k_n_imag,
                                                   c_m_n_real_host_result,
                                                   c_m_n_imag_host_result,
                                                   a_element_op,
                                                   b_element_op,
                                                   c_element_op);

        ref_invoker.Run(ref_argument);

213
214
215
        c_m_n_real_device_buf.FromDevice(c_m_n_real_device_result.mData.data());
        c_m_n_imag_device_buf.FromDevice(c_m_n_imag_device_result.mData.data());

216
        bool result = true;
217
218
219
220
221
222
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
        if constexpr(std::is_same_v<ADataType, ck::int4_t>)
        {
            const Tensor<CDataType> c_m_n_real_device_result_converted(c_m_n_real_device_result);
            const Tensor<CDataType> c_m_n_imag_device_result_converted(c_m_n_imag_device_result);

223
224
            result = ck::utils::check_err(c_m_n_real_device_result_converted,
                                          c_m_n_real_host_result,
225
226
227
228
                                          "Verification error: incorrect results in real part!",
                                          1e-2f,
                                          1e-1f);
            result = result && ck::utils::check_err(
229
230
                                   c_m_n_imag_device_result_converted,
                                   c_m_n_imag_host_result,
231
232
233
234
235
236
237
                                   "Verification error: incorrect results in imaginary part!",
                                   1e-2f,
                                   1e-1f);
        }
        else
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
        {
238
239
            result = ck::utils::check_err(c_m_n_real_device_result,
                                          c_m_n_real_host_result,
240
241
242
243
                                          "Verification error: incorrect results in real part!",
                                          1e-2f,
                                          1e-1f);
            result = result && ck::utils::check_err(
244
245
                                   c_m_n_imag_device_result,
                                   c_m_n_imag_host_result,
246
247
248
249
250
251
                                   "Verification error: incorrect results in imaginary part!",
                                   1e-2f,
                                   1e-1f);
        }

        return result;
252
    }
253
    return true;
254
}