elementwise_add_1d.cpp 5.68 KB
Newer Older
myamlak's avatar
myamlak committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*******************************************************************************
 *
 * MIT License
 *
 * Copyright (c) 2022 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 *******************************************************************************/
rocking5566's avatar
rocking5566 committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <iostream>
#include <cstdlib>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"

#include "device_tensor.hpp"
#include "binary_element_wise_operation.hpp"
#include "device_binary_elementwise.hpp"

using F16 = ck::half_t;
using F32 = float;

using ABDataType             = F16;
using CDataType              = F16;
using EltwiseComputeDataType = F32;

45
using Add = ck::tensor_operation::element_wise::Add;
rocking5566's avatar
rocking5566 committed
46

47
48
49
50
51
52
53
54
55
56
57
using DeviceElementwiseAddInstance =
    ck::tensor_operation::device::DeviceBinaryElementwise<ABDataType,
                                                          ABDataType,
                                                          CDataType,
                                                          EltwiseComputeDataType,
                                                          Add,
                                                          1,
                                                          8,
                                                          8,
                                                          8,
                                                          8>;
rocking5566's avatar
rocking5566 committed
58
59
60
61
62
63
64
65
66
67
68
69
70

template <typename HostTensorA,
          typename HostTensorB,
          typename HostTensorC,
          typename ComputeDataType,
          typename Functor>
void host_elementwise1D(
    HostTensorC& C, const HostTensorA& A, const HostTensorB& B, int M, Functor functor)
{
    using ctype = ck::remove_reference_t<decltype(C(0))>;

    for(int m = 0; m < M; ++m)
    {
myamlak's avatar
myamlak committed
71
72
        ComputeDataType Am = ck::type_convert<ComputeDataType>(A(m));
        ComputeDataType Bm = ck::type_convert<ComputeDataType>(B(m));
rocking5566's avatar
rocking5566 committed
73
74
        ComputeDataType Cm = 0;
        functor(Cm, Am, Bm);
myamlak's avatar
myamlak committed
75
        C(m) = ck::type_convert<ctype>(Cm);
rocking5566's avatar
rocking5566 committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    }
}

int main()
{
    bool do_verification = true;
    bool time_kernel     = false;

    ck::index_t M = 1024;

    auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
        return HostTensorDescriptor(std::vector<std::size_t>({len}),
                                    std::vector<std::size_t>({stride}));
    };

    Tensor<ABDataType> a_m(f_host_tensor_descriptor1d(M, 1));
    Tensor<ABDataType> b_m(f_host_tensor_descriptor1d(M, 1));
rocking5566's avatar
rocking5566 committed
93
    Tensor<CDataType> c_m(f_host_tensor_descriptor1d(M, 1));
rocking5566's avatar
rocking5566 committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    a_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});
    b_m.GenerateTensorValue(GeneratorTensor_3<ABDataType>{0.0, 1.0});

    DeviceMem a_m_device_buf(sizeof(ABDataType) * a_m.mDesc.GetElementSpace());
    DeviceMem b_m_device_buf(sizeof(ABDataType) * b_m.mDesc.GetElementSpace());
    DeviceMem c_m_device_buf(sizeof(CDataType) * c_m.mDesc.GetElementSpace());

    a_m_device_buf.ToDevice(a_m.mData.data());
    b_m_device_buf.ToDevice(b_m.mData.data());

    auto broadcastAdd = DeviceElementwiseAddInstance{};
    auto argument     = broadcastAdd.MakeArgumentPointer(a_m_device_buf.GetDeviceBuffer(),
                                                     b_m_device_buf.GetDeviceBuffer(),
                                                     c_m_device_buf.GetDeviceBuffer(),
                                                     {M},
                                                     {1},
                                                     {1},
                                                     {1},
                                                     Add{});

    if(!broadcastAdd.IsSupportedArgument(argument.get()))
    {
        throw std::runtime_error("The runtime parameters seems not supported by the "
118
                                 "DeviceBinaryElementwise instance, exiting!");
rocking5566's avatar
rocking5566 committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    };

    auto broadcastAdd_invoker_ptr = broadcastAdd.MakeInvokerPointer();
    float ave_time =
        broadcastAdd_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});

    std::cout << "Perf: " << ave_time << " ms" << std::endl;

    bool pass = true;
    if(do_verification)
    {
        c_m_device_buf.FromDevice(c_m.mData.data());
        Tensor<CDataType> host_c_m(f_host_tensor_descriptor1d(M, 1));

        host_elementwise1D<Tensor<ABDataType>,
                           Tensor<ABDataType>,
                           Tensor<CDataType>,
                           EltwiseComputeDataType,
                           Add>(host_c_m, a_m, b_m, M, Add{});

        pass &= ck::utils::check_err(
140
            c_m.mData, host_c_m.mData, "Error: Incorrect results c", 1e-3, 1e-3);
rocking5566's avatar
rocking5566 committed
141
142
143
144
    }

    return pass ? 0 : 1;
}