driver.cpp 27.1 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
#include <stdlib.h>
Chao Liu's avatar
Chao Liu committed
6
7
8
#include "config.hpp"
#include "ConstantTensorDescriptor.hpp"
#include "device.hpp"
Chao Liu's avatar
Chao Liu committed
9
#include "conv_common.hpp"
10
#include "device_convolution_implicit_gemm_v4_nchw_kcyx_nkhw.hpp"
Chao Liu's avatar
Chao Liu committed
11

12
13
using namespace ck;

Chao Liu's avatar
Chao Liu committed
14
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
15
16
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
17
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
18
    {
Chao Liu's avatar
Chao Liu committed
19
        return 1;
Chao Liu's avatar
Chao Liu committed
20
21
22
    }
};

Chao Liu's avatar
Chao Liu committed
23
24
25
26
27
28
29
30
31
32
33
34
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

35
36
37
38
39
40
41
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
        std::array<index_t, sizeof...(Is)> dims = {{static_cast<index_t>(is)...}};

42
        auto f_acc = [](auto a, auto b) { return 100 * a + b; };
43

44
        return std::accumulate(dims.begin(), dims.end(), index_t(0), f_acc);
45
46
47
    }
};

Chao Liu's avatar
Chao Liu committed
48
49
50
51
52
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
Chao Liu's avatar
Chao Liu committed
53
        std::array<index_t, sizeof...(Ts)> dims = {{Xs...}};
Chao Liu's avatar
Chao Liu committed
54
55
56
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
Chao Liu's avatar
Chao Liu committed
57
                               [](bool init, index_t x) -> int { return init != (x % 2); })
Chao Liu's avatar
Chao Liu committed
58
59
60
61
62
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
63
64
65
66
67
68
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
69
70
71
72
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
87
88
89
90
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
91
92
    constexpr auto desc = TConstTensorDesc{};

Chao Liu's avatar
Chao Liu committed
93
    std::initializer_list<index_t> lengths = {
Chao Liu's avatar
Chao Liu committed
94
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
Chao Liu's avatar
Chao Liu committed
95
    std::initializer_list<index_t> strides = {
Chao Liu's avatar
Chao Liu committed
96
97
98
99
100
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

101
102
103
104
105
106
107
template <class TIn,
          class TWei,
          class TOut,
          class ConvStrides,
          class ConvDilations,
          class LowerPads,
          class UpperPads>
108
109
110
void host_direct_convolution(const Tensor<TIn>& in_nchw,
                             const Tensor<TWei>& wei_kcyx,
                             Tensor<TOut>& out_nkhw,
111
112
                             ConvStrides,
                             ConvDilations,
113
114
                             LowerPads,
                             UpperPads)
Chao Liu's avatar
Chao Liu committed
115
{
Chao Liu's avatar
Chao Liu committed
116
117
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
118

Chao Liu's avatar
Chao Liu committed
119
120
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
121

Chao Liu's avatar
Chao Liu committed
122
123
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
124
        for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
125
        {
Chao Liu's avatar
Chao Liu committed
126
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
127
            {
128
                int hi = ho * ConvStrides{}[0] + y * ConvDilations{}[0] - h_pad_low;
Chao Liu's avatar
Chao Liu committed
129
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
130
                {
131
                    int wi = wo * ConvStrides{}[1] + x * ConvDilations{}[1] - w_pad_low;
132
133
134
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
135
                        v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x));
136
                    }
Chao Liu's avatar
Chao Liu committed
137
138
139
                }
            }
        }
140
        out_nkhw(n, k, ho, wo) = v;
Chao Liu's avatar
Chao Liu committed
141
142
143
    };

    auto f_par = make_ParallelTensorFunctor(f,
144
145
146
147
                                            out_nkhw.mDesc.GetLengths()[0],
                                            out_nkhw.mDesc.GetLengths()[1],
                                            out_nkhw.mDesc.GetLengths()[2],
                                            out_nkhw.mDesc.GetLengths()[3]);
Chao Liu's avatar
Chao Liu committed
148

Chao Liu's avatar
Chao Liu committed
149
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
150
151
}

152
153
154
155
156
157
template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
                                   LowerPads,
                                   UpperPads)
Chao Liu's avatar
Chao Liu committed
158
{
Chao Liu's avatar
Chao Liu committed
159
160
    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;
Chao Liu's avatar
Chao Liu committed
161

Chao Liu's avatar
Chao Liu committed
162
163
164
165
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
166

Chao Liu's avatar
Chao Liu committed
167
168
169
    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
170

171
172
    std::size_t HO = out_nkhw.mDesc.GetLengths()[2];
    std::size_t WO = out_nkhw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
173

Chao Liu's avatar
Chao Liu committed
174
175
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});
176

Chao Liu's avatar
Chao Liu committed
177
178
    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});
179

Chao Liu's avatar
Chao Liu committed
180
181
    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;
Chao Liu's avatar
Chao Liu committed
182

Chao Liu's avatar
Chao Liu committed
183
184
    std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile;
Chao Liu's avatar
Chao Liu committed
185

186
187
188
189
190
    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});
Chao Liu's avatar
Chao Liu committed
191

Chao Liu's avatar
Chao Liu committed
192
193
    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
194
        {
Chao Liu's avatar
Chao Liu committed
195
196
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
197
            {
Chao Liu's avatar
Chao Liu committed
198
                int wi = WoPerTile * wtile + i - w_pad_low;
199
200
201
202

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
Chao Liu's avatar
Chao Liu committed
203
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
204
205
206
                }
                else
                {
207
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
208
                }
Chao Liu's avatar
Chao Liu committed
209
210
211
212
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
265
266
267
    };

    auto f_wei_transform = [&](auto k, auto c) {
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
Chao Liu's avatar
Chao Liu committed
323
324
    };

Chao Liu's avatar
Chao Liu committed
325
326
    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
327
        {
Chao Liu's avatar
Chao Liu committed
328
            for(int i = 0; i < WiPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
329
330
331
332
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
Chao Liu's avatar
Chao Liu committed
333
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
Chao Liu's avatar
Chao Liu committed
334
335
                }

Chao Liu's avatar
Chao Liu committed
336
                out_transform(n, k, htile, wtile, j, i) = v;
Chao Liu's avatar
Chao Liu committed
337
338
339
340
            }
        }
    };

Chao Liu's avatar
Chao Liu committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
Chao Liu's avatar
Chao Liu committed
366
367
    };

Chao Liu's avatar
Chao Liu committed
368
369
    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
Chao Liu's avatar
Chao Liu committed
370
        {
Chao Liu's avatar
Chao Liu committed
371
372
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
Chao Liu's avatar
Chao Liu committed
373
            {
374
                std::size_t wo = WoPerTile * wtile + i;
375
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
Chao Liu's avatar
Chao Liu committed
376
377
378
379
380
381
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
382
383
    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
384
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
Chao Liu's avatar
Chao Liu committed
385
386
387
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
Chao Liu's avatar
Chao Liu committed
388
389
390
391
392
393
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
394
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
395
396
397
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
398
399
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
Chao Liu's avatar
Chao Liu committed
400
401
402
403
404
405
406
407
408
409
410
411
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

Chao Liu's avatar
Chao Liu committed
412
int main(int argc, char* argv[])
Chao Liu's avatar
Chao Liu committed
413
{
Chao Liu's avatar
Chao Liu committed
414
#if 0
Chao Liu's avatar
Chao Liu committed
415
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
416
    // cudnn@V100 68%, ck@V100 72%, ck@P100 52%, ck@VII 42%
Chao Liu's avatar
Chao Liu committed
417
418
419
420
421
422
423
424
425
426
427
428
429
    constexpr index_t N  = 64;
    constexpr index_t C  = 1536;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
430
#elif 1
Chao Liu's avatar
Chao Liu committed
431
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
432
    // cudnn@V100 77%, ck@V100 76%, ck@P100 79%, ck@VII 51%
Chao Liu's avatar
Chao Liu committed
433
434
435
436
437
438
439
440
441
442
443
444
445
    constexpr index_t N  = 128;
    constexpr index_t C  = 2048;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
446
#elif 0
Chao Liu's avatar
Chao Liu committed
447
    // 1x1 filter, 7x7 image
Chao Liu's avatar
Chao Liu committed
448
    // cudnn@V100 82%, ck@V100 76%, ck@P100 67%, ck@VII 64%
Chao Liu's avatar
Chao Liu committed
449
450
451
452
453
454
455
456
457
458
459
460
461
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
462
#elif 0
Chao Liu's avatar
Chao Liu committed
463
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
464
    // cudnn@V100 83%, ck@V100 75%, ck@P100 78%, ck@VII 65%
Chao Liu's avatar
Chao Liu committed
465
466
467
468
469
470
471
472
473
474
475
476
477
    constexpr index_t N  = 128;
    constexpr index_t C  = 1280;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
478
#elif 0
Chao Liu's avatar
Chao Liu committed
479
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
480
    // cudnn@V100 62%, ck@V100 68%, ck@P100 70%, ck@VII 50%
Chao Liu's avatar
Chao Liu committed
481
482
483
484
485
486
487
488
489
490
491
492
493
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
494
#elif 0
Chao Liu's avatar
Chao Liu committed
495
    // 1x1 filter, 8x8 image
Chao Liu's avatar
Chao Liu committed
496
    // cudnn@V100 74%, ck@V100 57%, ck@P100 78%, ck@VII 61%
Chao Liu's avatar
Chao Liu committed
497
498
499
500
501
502
503
504
505
506
507
508
509
    constexpr index_t N  = 64;
    constexpr index_t C  = 1536;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
510
#elif 0
Chao Liu's avatar
Chao Liu committed
511
    // 1x1 filter, 28x28 image
Chao Liu's avatar
Chao Liu committed
512
    // cudnn@V100 86%, ck@V100 84%, ck@P100 80%, ck@VII 69%
Chao Liu's avatar
Chao Liu committed
513
514
515
516
517
518
519
520
521
522
523
524
525
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
526
#elif 0
Chao Liu's avatar
Chao Liu committed
527
    // 1x1 filter, 7x7 image
Chao Liu's avatar
Chao Liu committed
528
    // cudnn@V100 71%, ck@V100 55%, ck@P100 70%, ck@VII 62%
Chao Liu's avatar
Chao Liu committed
529
530
531
532
533
534
535
536
537
538
539
540
541
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
542
#elif 0
Chao Liu's avatar
Chao Liu committed
543
    // 3x3 filter, 2x2 stride, 35x35 input, 17x17 output
Chao Liu's avatar
Chao Liu committed
544
    // cudnn@V100 90%, ck@V100 93%, ck@P100 83%, ck@VII 81%
Chao Liu's avatar
Chao Liu committed
545
546
547
548
549
550
551
552
553
554
555
556
557
    constexpr index_t N  = 128;
    constexpr index_t C  = 288;
    constexpr index_t HI = 35;
    constexpr index_t WI = 35;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    using ConvStrides   = Sequence<2, 2>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
558
#elif 0
Chao Liu's avatar
Chao Liu committed
559
    // 1x1 filter, 17x17 input
Chao Liu's avatar
Chao Liu committed
560
    // cudnn@V100 81%, ck@V100 76%, ck@P100 70%, ck@VII 76%
Chao Liu's avatar
Chao Liu committed
561
562
563
564
565
566
567
568
569
570
571
572
573
    constexpr index_t N  = 128;
    constexpr index_t C  = 768;
    constexpr index_t HI = 17;
    constexpr index_t WI = 17;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
574
#elif 0
Chao Liu's avatar
Chao Liu committed
575
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
576
    // cudnn@V100 73%, ck@V100 71%, ck@P100 70%, ck@VII 64%
Chao Liu's avatar
Chao Liu committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    constexpr index_t N  = 128;
    constexpr index_t C  = 528;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 14x14 image
Chao Liu's avatar
Chao Liu committed
592
    // cudnn@V100 73%, ck@V100 72%, ck@P100 79%, ck@VII 75%
Chao Liu's avatar
Chao Liu committed
593
594
595
596
597
598
599
600
601
602
603
604
605
    constexpr index_t N  = 128;
    constexpr index_t C  = 528;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
606
#elif 1
Chao Liu's avatar
Chao Liu committed
607
    // 1x1 filter, 7x7 image
Chao Liu's avatar
Chao Liu committed
608
    // cudnn@V100 49%, ck@V100 50%, ck@P100 61%, ck@VII 52%
Chao Liu's avatar
Chao Liu committed
609
610
611
612
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
Chao Liu's avatar
Chao Liu committed
613
614
615
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;
Chao Liu's avatar
Chao Liu committed
616
617
618
619

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

Chao Liu's avatar
Chao Liu committed
620
621
    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
Chao Liu's avatar
Chao Liu committed
622
#endif
Chao Liu's avatar
Chao Liu committed
623

624
625
626
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Chao Liu's avatar
Chao Liu committed
627
628
    auto in_nchw_desc  = make_ConstantTensorDescriptor_packed(Sequence<N, C, HI, WI>{});
    auto wei_kcyx_desc = make_ConstantTensorDescriptor_packed(Sequence<K, C, Y, X>{});
629
    auto out_nkhw_desc = get_convolution_with_padding_output_default_4d_tensor_descriptor(
630
        in_nchw_desc, wei_kcyx_desc, ConvStrides{}, ConvDilations{}, lower_pads, upper_pads);
Chao Liu's avatar
Chao Liu committed
631

Chao Liu's avatar
Chao Liu committed
632
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
Chao Liu's avatar
Chao Liu committed
633
    ostream_ConstantTensorDescriptor(wei_kcyx_desc, std::cout << "wei_kcyx_desc: ");
Chao Liu's avatar
Chao Liu committed
634
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
635

Chao Liu's avatar
Chao Liu committed
636
637
    using in_data_t  = float;
    using out_data_t = float;
638
639
640
641
    Tensor<in_data_t> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<in_data_t> wei_kcyx(make_TensorDescriptor(wei_kcyx_desc));
    Tensor<out_data_t> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<out_data_t> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
642

Chao Liu's avatar
Chao Liu committed
643
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
644

Chao Liu's avatar
Chao Liu committed
645
646
647
648
649
650
651
    if(argc != 3)
    {
        printf("arg1: do_verification, arg2: nrepeat\n");
        exit(1);
    }

    bool do_verification = atoi(argv[1]);
Chao Liu's avatar
Chao Liu committed
652
    index_t nrepeat      = atoi(argv[2]);
653
654
655
656

    if(do_verification)
    {
        in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
657
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
658
    }
Chao Liu's avatar
Chao Liu committed
659

Chao Liu's avatar
Chao Liu committed
660
661
662
663
664
665
666
667
668
    device_convolution_implicit_gemm_v4_nchw_kcyx_nkhw(in_nchw_desc,
                                                       in_nchw,
                                                       wei_kcyx_desc,
                                                       wei_kcyx,
                                                       out_nkhw_desc,
                                                       out_nkhw_device,
                                                       ConvStrides{},
                                                       ConvDilations{},
                                                       nrepeat);
Chao Liu's avatar
Chao Liu committed
669

670
    if(do_verification)
671
    {
Chao Liu's avatar
Chao Liu committed
672
#if 1
673
674
        if(Y == 3 && X == 3 && ConvStrides{}[0] == 1 && ConvStrides{}[1] == 1 &&
           ConvDilations{}[0] == 1 && ConvDilations{}[1] == 1)
675
        {
Chao Liu's avatar
Chao Liu committed
676
            host_winograd_3x3_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
677
678
        }
        else
Chao Liu's avatar
Chao Liu committed
679
#endif
680
        {
681
682
683
684
685
686
687
            host_direct_convolution(in_nchw,
                                    wei_kcyx,
                                    out_nkhw_host,
                                    ConvStrides{},
                                    ConvDilations{},
                                    lower_pads,
                                    upper_pads);
688
689
690
        }
        check_error(out_nkhw_host, out_nkhw_device);
    }
691
}