avg_pool3d_fwd.cpp 7.89 KB
Newer Older
rocking's avatar
rocking committed
1
// SPDX-License-Identifier: MIT
Illia Silin's avatar
Illia Silin committed
2
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
rocking's avatar
rocking committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#include <iomanip>
#include <vector>
#include <iostream>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_pool_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/tensor_operation_instance/gpu/pool3d_fwd.hpp"

using InDataType    = ck::half_t;
using OutDataType   = ck::half_t;
using IndexDataType = int32_t;

rocking's avatar
rocking committed
19
20
21
using InLayout  = ck::tensor_layout::convolution::NDHWC;
using OutLayout = ck::tensor_layout::convolution::NDHWC;

rocking's avatar
rocking committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
constexpr ck::index_t InOutRank  = 5;
constexpr ck::index_t WindowRank = 3;
#if 0
constexpr auto ReduceOpId  = ck::ReduceTensorOp::MAX;
constexpr bool OutputIndex = false;
#else
constexpr auto ReduceOpId  = ck::ReduceTensorOp::AVG;
constexpr bool OutputIndex = false;
#endif

struct SimpleDeviceMem
{
    SimpleDeviceMem() = delete;

    SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
    {
        (void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
    }

    void* GetDeviceBuffer() { return p_mem_; }

    ~SimpleDeviceMem() { (void)hipFree(p_mem_); }

    void* p_mem_;
};

int main(int argc, char* argv[])
{
rocking's avatar
rocking committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    ck::index_t N                 = 2;
    ck::index_t C                 = 32;
    ck::index_t Z                 = 2;
    ck::index_t Y                 = 2;
    ck::index_t X                 = 2;
    ck::index_t Di                = 30;
    ck::index_t Hi                = 30;
    ck::index_t Wi                = 30;
    ck::index_t window_stride_d   = 2;
    ck::index_t window_stride_h   = 2;
    ck::index_t window_stride_w   = 2;
    ck::index_t window_dilation_d = 1;
    ck::index_t window_dilation_h = 1;
    ck::index_t window_dilation_w = 1;
    ck::index_t in_left_pad_d     = 1;
    ck::index_t in_left_pad_h     = 1;
    ck::index_t in_left_pad_w     = 1;
    ck::index_t in_right_pad_d    = 1;
    ck::index_t in_right_pad_h    = 1;
    ck::index_t in_right_pad_w    = 1;

    const ck::index_t Zs = (Z - 1) * window_dilation_d + 1;
    const ck::index_t Ys = (Y - 1) * window_dilation_h + 1;
    const ck::index_t Xs = (X - 1) * window_dilation_w + 1;
    ck::index_t Do       = (Di + in_left_pad_d + in_right_pad_d - Zs) / window_stride_d + 1;
    ck::index_t Ho       = (Hi + in_left_pad_h + in_right_pad_h - Ys) / window_stride_h + 1;
    ck::index_t Wo       = (Wi + in_left_pad_w + in_right_pad_w - Xs) / window_stride_w + 1;
rocking's avatar
rocking committed
77
78
79
80
81

    // Pool API only support the order of NCDHW
    std::vector<ck::index_t> in_length              = {N, C, Di, Hi, Wi};
    std::vector<ck::index_t> out_length             = {N, C, Do, Ho, Wo};
    std::vector<ck::index_t> window_spatial_lengths = {Z, Y, X};
rocking's avatar
rocking committed
82
83
84
    std::vector<ck::index_t> window_strides = {window_stride_d, window_stride_h, window_stride_w};
    std::vector<ck::index_t> window_dilations{
        window_dilation_d, window_dilation_h, window_dilation_w};
rocking's avatar
rocking committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    std::vector<ck::index_t> input_left_pads  = {in_left_pad_d, in_left_pad_h, in_left_pad_w};
    std::vector<ck::index_t> input_right_pads = {in_right_pad_d, in_right_pad_h, in_right_pad_w};

    std::size_t in_tensor_size  = N * C * Di * Hi * Wi;
    std::size_t out_tensor_size = N * C * Do * Ho * Wo;

    // tensor layout = NDHWC
    std::vector<ck::index_t> in_tensor_stride  = {Di * C * Hi * Wi, 1, C * Hi * Wi, Wi * C, C};
    std::vector<ck::index_t> out_tensor_stride = {Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C};

    SimpleDeviceMem in_device_buf(sizeof(InDataType) * in_tensor_size);
    SimpleDeviceMem out_device_buf(sizeof(OutDataType) * out_tensor_size);
    SimpleDeviceMem out_indices_device_buf(sizeof(IndexDataType) * out_tensor_size);

    using DeviceOp = ck::tensor_operation::device::DevicePoolFwd<InOutRank,
                                                                 WindowRank,
                                                                 InDataType,
                                                                 OutDataType,
                                                                 IndexDataType,
rocking's avatar
rocking committed
104
105
                                                                 InLayout,
                                                                 OutLayout,
rocking's avatar
rocking committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                                                                 ReduceOpId,
                                                                 OutputIndex>;

    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;

    std::string best_op_name;
    bool found            = false;
    int best_op_id        = -1;
    float best_ave_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;

    // profile device operation instances
    std::cout << "Run all instances and do timing" << std::endl;

    for(int i = 0; i < op_ptrs.size(); ++i)
    {
        auto& op_ptr      = op_ptrs[i];
        auto argument_ptr = op_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
            in_length,
            window_spatial_lengths,
            out_length,
            in_tensor_stride,
            out_tensor_stride,
            out_tensor_stride,
            window_strides,
rocking's avatar
rocking committed
138
            window_dilations,
rocking's avatar
rocking committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
            input_left_pads,
            input_right_pads,
            {2, 3, 4});

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        std::string op_name = op_ptr->GetTypeString();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});

            std::size_t num_bytes =
                in_tensor_size * sizeof(InDataType) + out_tensor_size * sizeof(OutDataType);

            if constexpr(OutputIndex)
                num_bytes += out_tensor_size * sizeof(IndexDataType);

            float gb_per_sec = num_bytes / 1.E6 / ave_time;

            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
                      << op_name << std::endl;

            if(ave_time < best_ave_time)
            {
                found           = true;
                best_op_id      = i;
                best_op_name    = op_name;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }
        }
        else
        {
            std::cout << op_name << " does not support this problem" << std::endl;
        }
    }

    // run the best intance
    if(found)
    {
        std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
                  << best_op_name << std::endl;

        auto& op_ptr = op_ptrs[best_op_id];
        std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
                  << std::endl;

        auto argument_ptr = op_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
            in_length,
            window_spatial_lengths,
            out_length,
            in_tensor_stride,
            out_tensor_stride,
            out_tensor_stride,
            window_strides,
rocking's avatar
rocking committed
198
            window_dilations,
rocking's avatar
rocking committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            input_left_pads,
            input_right_pads,
            {2, 3, 4});

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
        }

        std::cout << "Done" << std::endl;
    }

    return 0;
}