main.cpp 7.87 KB
Newer Older
ltqin's avatar
ltqin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_instance.hpp"
#include "host_gemm.hpp"
#include "tensor_layout.hpp"
#include "device_gemm_xdl_instance.hpp"
#include "device_gemm_splitk_xdl.hpp"

enum GemmMatrixLayout
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
};
using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;
using GEMM_PTR                               = std::vector<DeviceGemmNoOpPtr>;
ltqin's avatar
ltqin committed
29
30
31
32
33

static std::vector<std::vector<bool>>& GetLayoutType(){
    static std::vector<std::vector<bool>>  LayOut = {{0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0}};
    return LayOut;
} 
ltqin's avatar
ltqin committed
34
35
static void add_device_gemm_instance_mk_kn_mn(GEMM_PTR& gemm_ptrs)
{
ltqin's avatar
ltqin committed
36
    ck::tensor_operation::device::device_gemm_instance::add_device_splitk_gemm_instance<
ltqin's avatar
ltqin committed
37
38
39
40
41
42
43
44
45
        float,
        float,
        float,
        ck::tensor_layout::gemm::RowMajor,
        ck::tensor_layout::gemm::RowMajor,
        ck::tensor_layout::gemm::RowMajor>(gemm_ptrs);
}
static void add_device_gemm_instance_mk_nk_mn(GEMM_PTR& gemm_ptrs)
{
ltqin's avatar
ltqin committed
46
    ck::tensor_operation::device::device_gemm_instance::add_device_splitk_gemm_instance<
ltqin's avatar
ltqin committed
47
48
49
50
51
52
53
54
55
        float,
        float,
        float,
        ck::tensor_layout::gemm::RowMajor,
        ck::tensor_layout::gemm::ColumnMajor,
        ck::tensor_layout::gemm::RowMajor>(gemm_ptrs);
}
static void add_device_gemm_instance_km_kn_mn(GEMM_PTR& gemm_ptrs)
{
ltqin's avatar
ltqin committed
56
    ck::tensor_operation::device::device_gemm_instance::add_device_splitk_gemm_instance<
ltqin's avatar
ltqin committed
57
58
59
60
61
62
63
64
65
        float,
        float,
        float,
        ck::tensor_layout::gemm::ColumnMajor,
        ck::tensor_layout::gemm::RowMajor,
        ck::tensor_layout::gemm::RowMajor>(gemm_ptrs);
}
static void add_device_gemm_instance_km_nk_mn(GEMM_PTR& gemm_ptrs)
{
ltqin's avatar
ltqin committed
66
    ck::tensor_operation::device::device_gemm_instance::add_device_splitk_gemm_instance<
ltqin's avatar
ltqin committed
67
68
69
70
71
72
73
74
        float,
        float,
        float,
        ck::tensor_layout::gemm::ColumnMajor,
        ck::tensor_layout::gemm::ColumnMajor,
        ck::tensor_layout::gemm::RowMajor>(gemm_ptrs);
}

ltqin's avatar
ltqin committed
75
76
77
static auto& GetAddDeviceGemmInstance()
{
    static std::vector<void (*)(GEMM_PTR&)> AddDeviceGemmInstance = {add_device_gemm_instance_mk_kn_mn,
ltqin's avatar
ltqin committed
78
79
80
                                                                 add_device_gemm_instance_mk_nk_mn,
                                                                 add_device_gemm_instance_km_kn_mn,
                                                                 add_device_gemm_instance_km_nk_mn};
ltqin's avatar
ltqin committed
81
82
83
84
    return AddDeviceGemmInstance;
}


ltqin's avatar
ltqin committed
85
86
static void add_device_gemm_instance(GEMM_PTR& gemm_ptrs, int layout)
{
ltqin's avatar
ltqin committed
87
    GetAddDeviceGemmInstance()[layout](gemm_ptrs);
ltqin's avatar
ltqin committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
}

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

    for(int i = 0; i < ref.mData.size(); ++i)
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }

    return true;
}
int main(int argc, char* argv[])
{
    if(argc != 8)
    {
        printf("arg1: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
        printf("                     1: A[m, k] * B[n, k] = C[m, n];\n");
        printf("                     2: A[k, n] * B[k, n] = C[m, n];\n");
        printf("                     3: A[k, n] * B[n, k] = C[m, n])\n");
        printf("arg2 to 7: M, N, K, StrideA, StrideB, StrideC\n");
        return 1;
    }

    const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));

    const int M = std::stoi(argv[2]);
    const int N = std::stoi(argv[3]);
    const int K = std::stoi(argv[4]);

    const int StrideA = std::stoi(argv[5]);
    const int StrideB = std::stoi(argv[6]);
    const int StrideC = std::stoi(argv[7]);

    if(layout > 3 || layout < 0)
    {
        printf("arg1 must be 0 ,1 ,2 or 3 \n");
        return 1;
    }
ltqin's avatar
ltqin committed
133
134
    auto LayOut = GetLayoutType();

ltqin's avatar
ltqin committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, bool isRevert) {
            if(isRevert)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
        };
    Tensor<float> a_m_k(f_host_tensor_descriptor(M, K, StrideA, LayOut[layout][0]));
    Tensor<float> b_k_n(f_host_tensor_descriptor(K, N, StrideB, LayOut[layout][1]));
    Tensor<float> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, LayOut[layout][2]));
    Tensor<float> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, LayOut[layout][2]));

    // init data
    std::size_t num_thread = std::thread::hardware_concurrency();
    a_m_k.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    b_k_n.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<float>{}, num_thread);

    host_gemm_mk_kn_mn(a_m_k,
                       b_k_n,
                       c_m_n_host_result,
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{});

    DeviceMem a_device_buf(sizeof(float) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(float) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(float) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
    GEMM_PTR gemm_ptrs;
    add_device_gemm_instance(gemm_ptrs, layout);

    bool success = false;
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<float*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{});

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            invoker_ptr->Run(argument_ptr.get(), 0);

            c_device_buf.FromDevice(c_m_n_device_result.mData.data());
            if(!check_out(c_m_n_host_result, c_m_n_device_result))
            {
                success = false;
                break;
            }
            success = true;
        }
    }
    if(success)
    {
        std::cout << "test split k : Pass" << std::endl;
    }
    else
    {
        std::cout << "test split k: Fail " << std::endl;
    }
    return 0;
ltqin's avatar
ltqin committed
219
}