profile_gemm_impl.hpp 9.97 KB
Newer Older
1
2
#pragma once
#include "device_gemm_instance.hpp"
ltqin's avatar
ltqin committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

using DeviceGemmNoOpPtr = DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                        ck::tensor_operation::element_wise::PassThrough,
                                        ck::tensor_operation::element_wise::PassThrough>;

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<float,
                              float,
                              float,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

template <>
void add_device_gemm_instance<ck::half_t,
                              ck::half_t,
                              ck::half_t,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::ColumnMajor,
                              ck::tensor_layout::gemm::RowMajor>(std::vector<DeviceGemmNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
81
82
83
84
85
86
87
88
89
90

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
Chao Liu's avatar
Chao Liu committed
91
92
93
94
95
96
97
98
99
100
void profile_gemm_impl(int do_verification,
                       int init_method,
                       bool do_log,
                       int nrepeat,
                       int M,
                       int N,
                       int K,
                       int StrideA,
                       int StrideB,
                       int StrideC)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

ltqin's avatar
ltqin committed
125
    std::size_t num_thread = std::thread::hardware_concurrency();
126
127
128
129
    switch(init_method)
    {
    case 0: break;
    case 1:
ltqin's avatar
ltqin committed
130
131
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
132
133
        break;
    default:
ltqin's avatar
ltqin committed
134
135
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
136
    }
ltqin's avatar
ltqin committed
137
138
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
139
140
141

    if(do_verification)
    {
Chao Liu's avatar
Chao Liu committed
142
143
144
145
146
147
        host_gemm_mk_kn_mn(a_m_k,
                           b_k_n,
                           c_m_n_host_result,
                           ck::tensor_operation::element_wise::PassThrough{},
                           ck::tensor_operation::element_wise::PassThrough{},
                           ck::tensor_operation::element_wise::PassThrough{});
148
149
150
151
152
153
154
155
156
157
158
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
Chao Liu's avatar
Chao Liu committed
159
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmNoOpPtr> gemm_ptrs;
160
161
162
163
164
165
166
167
168
169

    ck::tensor_operation::device::device_gemm_instance::
        add_device_gemm_instance<ADataType, BDataType, CDataType, ALayout, BLayout, CLayout>(
            gemm_ptrs);

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

Chao Liu's avatar
Chao Liu committed
170
    std::string best_gemm_name;
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
Chao Liu's avatar
Chao Liu committed
187
188
189
190
                                          StrideC,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{});
191
192
193
194
195

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
Chao Liu's avatar
Chao Liu committed
196
197
            std::string gemm_name = gemm_ptr->GetTypeString();

198
199
200
            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = std::size_t(2) * M * N * K;
Chao Liu's avatar
Chao Liu committed
201

202
203
204
205
206
207
208
209
            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
Chao Liu's avatar
Chao Liu committed
210
                      << " GB/s, " << gemm_name << std::endl;
211
212
213

            if(tflops > best_tflops)
            {
Chao Liu's avatar
Chao Liu committed
214
                best_gemm_name  = gemm_name;
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());

                check_error(c_m_n_host_result, c_m_n_device_result);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "this device GEMM instance does not support this GEMM problem"
                      << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
Chao Liu's avatar
Chao Liu committed
245
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
246
247
248
249
}

} // namespace profiler
} // namespace ck