flash_attention.cpp 9.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <vector>

#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm_permute_general.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

struct ScaleBiasMask
{
    ScaleBiasMask(float scale, float mask_filter_value)
        : scale_(scale), mask_filter_value_(mask_filter_value)
    {
    }

    // biased, masked
    template <typename Y, typename X0, typename X1, typename X2>
    __host__ __device__ constexpr void
    operator()(Y& y, const X0& x, const X1& bias, const X2& mask) const;

    template <>
    __host__ __device__ constexpr void
    operator()(float& y, const float& x, const ck::half_t& bias, const int16_t& mask) const
    {
        float filter_value = (mask == 1 ? 0.0f : mask_filter_value_);
        y                  = scale_ * x + ck::type_convert<float>(bias) + filter_value;
    }

    template <>
    __host__ __device__ constexpr void
    operator()(float& y, const float& x, const ck::half_t& bias, const ck::half_t& mask) const
    {
        float filter_value = (mask < 1.0f ? mask_filter_value_ : 0.0f);
        y                  = scale_ * x + ck::type_convert<float>(bias) + filter_value;
    }

    const float scale_;
    const float mask_filter_value_;
};

using AElementOp    = ck::tensor_operation::element_wise::PassThrough;
using B0ElementOp   = ck::tensor_operation::element_wise::PassThrough;
using Acc0ElementOp = ScaleBiasMask;
using B1ElementOp   = ck::tensor_operation::element_wise::PassThrough;
using CElementOp    = ck::tensor_operation::element_wise::PassThrough;

constexpr static auto MaskingSpec =
    ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;

using ADataType   = ck::half_t;
using B0DataType  = ck::half_t;
using B1DataType  = ck::half_t;
using CDataType   = ck::half_t;
using D00DataType = ck::half_t;
using D01DataType = ck::half_t;
using AccDataType = float;

struct SimpleDeviceMem
{
    SimpleDeviceMem() = delete;

    SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
    {
        (void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
    }

    void* GetDeviceBuffer() { return p_mem_; }

    ~SimpleDeviceMem() { (void)hipFree(p_mem_); }

    void* p_mem_;
};

int main()
{
    int G0 = 48;
    int G1 = 16;
    int M  = 1024;
    int N  = 1024;
    int K  = 64;
    int O  = 64;

    // A layout [G0, M, G1, K]
    std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
    std::vector<ck::index_t> a_gs_ms_ks_strides{M * G1 * K, K, G1 * K, 1};

    // B0 layout [G0, N, G1, K]
    std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
    std::vector<ck::index_t> b0_gs_ns_ks_strides{N * G1 * K, K, G1 * K, 1};

    // B1 layout [G0, N, G1, O]
    std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
    std::vector<ck::index_t> b1_gs_os_ns_strides{N * G1 * O, O, 1, G1 * O};

    // C layout [G0, M, G1, O]
    std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
    std::vector<ck::index_t> c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1};

    // D00 layout [G0, M, G1, N]
    std::vector<ck::index_t> d00_gs_ms_ns_lengths{G0, G1, M, N};
    std::vector<ck::index_t> d00_gs_ms_ns_strides{M * G1 * N, N, G1 * N, 1};
    // D01 layout [G0, M, G1, N]
    std::vector<ck::index_t> d01_gs_ms_ns_lengths{G0, G1, M, N};
    std::vector<ck::index_t> d01_gs_ms_ns_strides{M * G1 * N, N, G1 * N, 1};

    SimpleDeviceMem a_device_buf(sizeof(ADataType) * G0 * G1 * M * K);
    SimpleDeviceMem b0_device_buf(sizeof(B0DataType) * G0 * G1 * N * K);
    SimpleDeviceMem d00_device_buf(sizeof(D00DataType) * G0 * G1 * M * N);
    SimpleDeviceMem d01_device_buf(sizeof(D01DataType) * G0 * G1 * M * N);
    SimpleDeviceMem b1_device_buf(sizeof(B1DataType) * G0 * G1 * O * N);
    SimpleDeviceMem c_device_buf(sizeof(CDataType) * G0 * G1 * M * O);

    using DeviceOp = ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute<
        2,
        1,
        1,
        1,
        1,
        ADataType,
        B0DataType,
        B1DataType,
        CDataType,
        ck::Tuple<D00DataType, D01DataType>,
        ck::Tuple<>,
        AElementOp,
        B0ElementOp,
        Acc0ElementOp,
        B1ElementOp,
        CElementOp,
        MaskingSpec>;

    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;

    std::string best_op_name;
    int best_op_id        = -1;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device op instances
    std::cout << "Run all instances and do timing" << std::endl;

    for(size_t i = 0; i < op_ptrs.size(); ++i)
    {
        auto& op_ptr      = op_ptrs[i];
        auto argument_ptr = op_ptr->MakeArgumentPointer(
            a_device_buf.GetDeviceBuffer(),
            b0_device_buf.GetDeviceBuffer(),
            b1_device_buf.GetDeviceBuffer(),
            c_device_buf.GetDeviceBuffer(),
            std::array<void*, 2>{d00_device_buf.GetDeviceBuffer(),
                                 d01_device_buf.GetDeviceBuffer()}, // p_acc0_biases
            {},                                                     // p_acc1_biases
            a_gs_ms_ks_lengths,
            a_gs_ms_ks_strides,
            b0_gs_ns_ks_lengths,
            b0_gs_ns_ks_strides,
            b1_gs_os_ns_lengths,
            b1_gs_os_ns_strides,
            c_gs_ms_os_lengths,
            c_gs_ms_os_strides,
            std::array<std::vector<ck::index_t>, 2>{
                d00_gs_ms_ns_lengths, d01_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
            std::array<std::vector<ck::index_t>, 2>{
                d00_gs_ms_ns_strides, d01_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
            {},                                              // acc1_biases_gs_ms_os_lengths
            {},                                              // acc1_biases_gs_ms_os_strides
            AElementOp{},
            B0ElementOp{},
            Acc0ElementOp{1 / sqrtf(K), 0.1},
            B1ElementOp{},
            CElementOp{});

        auto invoker_ptr    = op_ptr->MakeInvokerPointer();
        std::string op_name = op_ptr->GetTypeString();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {

            float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});

            std::size_t flop      = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * G0 * G1;
            std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
                                     sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O +
                                     sizeof(D00DataType) * M * N * 2) *
                                    G0 * G1;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << op_name << std::endl;

            if(tflops > best_tflops)
            {
                best_op_id      = i;
                best_op_name    = op_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }
        }
        else
        {
            std::cout << op_name << " does not support this problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;

    // run the best instance
    {
        auto& op_ptr = op_ptrs[best_op_id];
        std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
                  << std::endl;
        auto argument_ptr = op_ptr->MakeArgumentPointer(
            a_device_buf.GetDeviceBuffer(),
            b0_device_buf.GetDeviceBuffer(),
            b1_device_buf.GetDeviceBuffer(),
            c_device_buf.GetDeviceBuffer(),
            std::array<void*, 2>{d00_device_buf.GetDeviceBuffer(),
                                 d01_device_buf.GetDeviceBuffer()}, // p_acc0_biases
            {},                                                     // p_acc1_biases
            a_gs_ms_ks_lengths,
            a_gs_ms_ks_strides,
            b0_gs_ns_ks_lengths,
            b0_gs_ns_ks_strides,
            b1_gs_os_ns_lengths,
            b1_gs_os_ns_strides,
            c_gs_ms_os_lengths,
            c_gs_ms_os_strides,
            std::array<std::vector<ck::index_t>, 2>{
                d00_gs_ms_ns_lengths, d01_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
            std::array<std::vector<ck::index_t>, 2>{
                d00_gs_ms_ns_strides, d01_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
            {},                                              // acc1_biases_gs_ms_os_lengths
            {},                                              // acc1_biases_gs_ms_os_strides
            AElementOp{},
            B0ElementOp{},
            Acc0ElementOp{1 / sqrtf(K), 0.1},
            B1ElementOp{},
            CElementOp{});

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
        }

        std::cout << "Done" << std::endl;
    }

    return 0;
}