device_gemm_xdl.hpp 30.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
#ifndef DEVICE_GEMM_XDL_HPP
#define DEVICE_GEMM_XDL_HPP

#include <iostream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
ltqin's avatar
ltqin committed
13
14
15
16
17
#include "gridwise_gemm_xdlops_v2r3r1.hpp"

#ifndef USING_V2R3R1
#define USING_V2R3R1 1
#endif
18
19
20
21
22
23
24
25
26
27
28
29

namespace ck {
namespace tensor_operation {
namespace device {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
Chao Liu's avatar
Chao Liu committed
30
31
32
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
          ck::index_t BlockSize,
          ck::index_t MPerBlock,
          ck::index_t NPerBlock,
          ck::index_t K0PerBlock,
          ck::index_t K1,
          ck::index_t MPerXDL,
          ck::index_t NPerXDL,
          ck::index_t MXdlPerWave,
          ck::index_t NXdlPerWave,
          typename ABlockTransferThreadSliceLengths_K0_M_K1,
          typename ABlockTransferThreadClusterLengths_K0_M_K1,
          typename ABlockTransferThreadClusterArrangeOrder,
          typename ABlockTransferSrcAccessOrder,
          ck::index_t ABlockTransferSrcVectorDim,
          ck::index_t ABlockTransferSrcScalarPerVector,
          ck::index_t ABlockTransferDstScalarPerVector_K1,
          typename BBlockTransferThreadSliceLengths_K0_N_K1,
          typename BBlockTransferThreadClusterLengths_K0_N_K1,
          typename BBlockTransferThreadClusterArrangeOrder,
          typename BBlockTransferSrcAccessOrder,
          ck::index_t BBlockTransferSrcVectorDim,
          ck::index_t BBlockTransferSrcScalarPerVector,
          ck::index_t BBlockTransferDstScalarPerVector_K1,
          ck::index_t CThreadTransferSrcDstVectorDim,
          ck::index_t CThreadTransferDstScalarPerVector,
          bool ABlockLdsAddExtraM,
          bool BBlockLdsAddExtraN>
Chao Liu's avatar
Chao Liu committed
60
61
struct DeviceGemmXdl
    : public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
{
    static constexpr auto I0 = Number<0>{};
    static constexpr auto I1 = Number<1>{};
    static constexpr auto I2 = Number<2>{};

    static constexpr auto K1Number = Number<K1>{};

    static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto a_grid_desc_m_k = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
            }
        }();

        const auto a_grid_desc_k0_m_k1 =
            transform_tensor_descriptor(a_grid_desc_m_k,
                                        make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                                                   make_pass_through_transform(M)),
                                        make_tuple(Sequence<1>{}, Sequence<0>{}),
                                        make_tuple(Sequence<0, 2>{}, Sequence<1>{}));

        return a_grid_desc_k0_m_k1;
    }

    static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto b_grid_desc_k_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
            }
        }();

        const auto b_grid_desc_k0_n_k1 =
            transform_tensor_descriptor(b_grid_desc_k_n,
                                        make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                                                   make_pass_through_transform(N)),
                                        make_tuple(Sequence<0>{}, Sequence<1>{}),
                                        make_tuple(Sequence<0, 2>{}, Sequence<1>{}));

        return b_grid_desc_k0_n_k1;
    }

    static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
    {
        if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
        {
            return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
        }
        else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
        {
            return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
        }
    }

    using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
    using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
    using CGridDesc_M_N     = decltype(MakeCGridDescriptor_M_N(1, 1, 1));

    // TODO remove these hacks
    static constexpr auto a_k0_m_k1_grid_step_hacks =
        make_tuple(make_tuple(Sequence<0, 0, 0>{},   // 0+: K0
                              Sequence<0, 0, 0>{},   // 1+: M
                              Sequence<0, 0, 0>{}),  // 2+: K1
                   make_tuple(Sequence<0, 0, 0>{},   // 0-: K0
                              Sequence<0, 0, 0>{},   // 1-: M
                              Sequence<0, 0, 0>{})); // 2-: K1

    static constexpr auto b_k0_n_k1_grid_step_hacks =
        make_tuple(make_tuple(Sequence<0, 0, 0>{},   // 0+: K0
                              Sequence<0, 0, 0>{},   // 1+: N
                              Sequence<0, 0, 0>{}),  // 2+: K1
                   make_tuple(Sequence<0, 0, 0>{},   // 0-: K0
                              Sequence<0, 0, 0>{},   // 1-: N
                              Sequence<0, 0, 0>{})); // 2-: K1

    static constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks =
        make_tuple(make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 0+: M0
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 1+: N0
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 2+: M1
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 3+: N1
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 4+: M2
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 5+: M3
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 6+: M4
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{}),  // 7+: N2
                   make_tuple(Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 0-: M0
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 1-: N0
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 2-: M1
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 3-: N1
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 4-: M2
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 5-: M3
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{},   // 6-: M4
                              Sequence<0, 0, 0, 0, 0, 0, 0, 0, 0>{})); // 7-: N2

    static constexpr auto a_k0_m_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};

    static constexpr auto b_k0_n_k1_grid_move_slice_window_step_hacks = Sequence<0, 0, 0>{};

    // GridwiseGemm
ltqin's avatar
ltqin committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#if USING_V2R3R1
    using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3r1<
        BlockSize,
        ADataType, // TODO: distinguish A/B datatype
        AccDataType,
        CDataType,
        InMemoryDataOperationEnum_t::Set,
        AGridDesc_K0_M_K1,
        BGridDesc_K0_N_K1,
        CGridDesc_M_N,
        AElementwiseOperation,
        BElementwiseOperation,
        CElementwiseOperation,
        MPerBlock,
        NPerBlock,
        K0PerBlock,
        MPerXDL,
        NPerXDL,
        K1,
        MXdlPerWave,
        NXdlPerWave,
        ABlockTransferThreadSliceLengths_K0_M_K1,
        ABlockTransferThreadClusterLengths_K0_M_K1,
        ABlockTransferThreadClusterArrangeOrder,
        ABlockTransferSrcAccessOrder,
        ABlockTransferSrcVectorDim,
        ABlockTransferSrcScalarPerVector,
        ABlockTransferDstScalarPerVector_K1,
        false, // AThreadTransferSrcResetCoordinateAfterRun,
        BBlockTransferThreadSliceLengths_K0_N_K1,
        BBlockTransferThreadClusterLengths_K0_N_K1,
        BBlockTransferThreadClusterArrangeOrder,
        BBlockTransferSrcAccessOrder,
        BBlockTransferSrcVectorDim,
        BBlockTransferSrcScalarPerVector,
        BBlockTransferDstScalarPerVector_K1,
        false,                            // BThreadTransferSrcResetCoordinateAfterRun,
        Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
        CThreadTransferSrcDstVectorDim,
        CThreadTransferDstScalarPerVector,
        decltype(a_k0_m_k1_grid_step_hacks),                   //  AGridStepHacks,
        decltype(b_k0_n_k1_grid_step_hacks),                   //  BGridStepHacks,
        decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),   //  CGridStepHacks,
        decltype(a_k0_m_k1_grid_move_slice_window_step_hacks), //  AGridMoveSliceWindowStepHacks,
        decltype(b_k0_n_k1_grid_move_slice_window_step_hacks), //  BGridMoveSliceWindowStepHacks,
        false,                                                 // CAccessOrderMRepeatNRepeat,
        ABlockLdsAddExtraM,
        BBlockLdsAddExtraN>;
#else
228
229
230
231
232
233
234
235
236
    using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
        BlockSize,
        ADataType, // TODO: distinguish A/B datatype
        AccDataType,
        CDataType,
        InMemoryDataOperationEnum_t::Set,
        AGridDesc_K0_M_K1,
        BGridDesc_K0_N_K1,
        CGridDesc_M_N,
Chao Liu's avatar
Chao Liu committed
237
238
239
        AElementwiseOperation,
        BElementwiseOperation,
        CElementwiseOperation,
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        MPerBlock,
        NPerBlock,
        K0PerBlock,
        MPerXDL,
        NPerXDL,
        K1,
        MXdlPerWave,
        NXdlPerWave,
        ABlockTransferThreadSliceLengths_K0_M_K1,
        ABlockTransferThreadClusterLengths_K0_M_K1,
        ABlockTransferThreadClusterArrangeOrder,
        ABlockTransferSrcAccessOrder,
        ABlockTransferSrcVectorDim,
        ABlockTransferSrcScalarPerVector,
        ABlockTransferDstScalarPerVector_K1,
        false, // AThreadTransferSrcResetCoordinateAfterRun,
        BBlockTransferThreadSliceLengths_K0_N_K1,
        BBlockTransferThreadClusterLengths_K0_N_K1,
        BBlockTransferThreadClusterArrangeOrder,
        BBlockTransferSrcAccessOrder,
        BBlockTransferSrcVectorDim,
        BBlockTransferSrcScalarPerVector,
        BBlockTransferDstScalarPerVector_K1,
        false,                            // BThreadTransferSrcResetCoordinateAfterRun,
        Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
        CThreadTransferSrcDstVectorDim,
        CThreadTransferDstScalarPerVector,
        decltype(a_k0_m_k1_grid_step_hacks),                   //  AGridStepHacks,
        decltype(b_k0_n_k1_grid_step_hacks),                   //  BGridStepHacks,
        decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_step_hacks),   //  CGridStepHacks,
        decltype(a_k0_m_k1_grid_move_slice_window_step_hacks), //  AGridMoveSliceWindowStepHacks,
        decltype(b_k0_n_k1_grid_move_slice_window_step_hacks), //  BGridMoveSliceWindowStepHacks,
        false,                                                 // CAccessOrderMRepeatNRepeat,
        ABlockLdsAddExtraM,
        BBlockLdsAddExtraN>;
ltqin's avatar
ltqin committed
275
#endif
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
        decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{}));

    using Block2CTileMap = decltype(GridwiseGemm::MakeBlock2CTileMap(CGridDesc_M_N{}, 1, 1));

    // Argument
    struct Argument : public BaseArgument
    {
        Argument(const ADataType* p_a_grid,
                 const BDataType* p_b_grid,
                 CDataType* p_c_grid,
                 index_t M,
                 index_t N,
                 index_t K,
                 index_t StrideA,
                 index_t StrideB,
                 index_t StrideC,
                 index_t M01,
Chao Liu's avatar
Chao Liu committed
294
295
296
297
                 index_t N01,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
298
299
300
301
302
303
304
305
306
            : p_a_grid_{p_a_grid},
              p_b_grid_{p_b_grid},
              p_c_grid_{p_c_grid},
              a_grid_desc_k0_m_k1_{},
              b_grid_desc_k0_n_k1_{},
              c_grid_desc_m_n_{},
              c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
              block_2_ctile_map_{},
              M01_{M01},
Chao Liu's avatar
Chao Liu committed
307
308
309
310
              N01_{N01},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        {
            a_grid_desc_k0_m_k1_ = DeviceGemmXdl::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
            b_grid_desc_k0_n_k1_ = DeviceGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
            c_grid_desc_m_n_     = DeviceGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);

            if(GridwiseGemm::CheckValidity(
                   a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
            {
                c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
                    GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);

                block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
            }
        }

        //  private:
        const ADataType* p_a_grid_;
        const BDataType* p_b_grid_;
        CDataType* p_c_grid_;
        AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
        BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
        CGridDesc_M_N c_grid_desc_m_n_;
        CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
        Block2CTileMap block_2_ctile_map_;
        index_t M01_;
        index_t N01_;
Chao Liu's avatar
Chao Liu committed
337
338
339
        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    };

    // Invoker
    struct Invoker : public BaseInvoker
    {
        using Argument = DeviceGemmXdl::Argument;

        float Run(const Argument& arg, int nrepeat = 1)
        {
            {
                std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
                          << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
                          << arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
                          << ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
                          << arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
                          << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
            }

            if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                            arg.b_grid_desc_k0_n_k1_,
                                            arg.c_grid_desc_m_n_,
                                            arg.M01_,
                                            arg.N01_))
            {
                throw std::runtime_error(
                    "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
            }

            const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);

            const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);

            const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);

            float ave_time = 0;
ltqin's avatar
ltqin committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#if USING_V2R3R1
            const bool has_double_tail_k_block_loop =
                GridwiseGemm::CalculateHasDoubleTailKBlockLoop(K0);
            if(has_main_k0_block_loop)
            {
                if(has_double_tail_k_block_loop)
                {
                    const auto kernel = kernel_gemm_xdlops_v2r3r1<
                        GridwiseGemm,
                        ADataType, // TODO: distiguish A/B datatype
                        CDataType,
                        remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                        remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
                        remove_reference_t<DeviceGemmXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
                        AElementwiseOperation,
                        BElementwiseOperation,
                        CElementwiseOperation,
                        remove_reference_t<DeviceGemmXdl::Block2CTileMap>,
                        true,
                        true>;

                    ave_time = launch_and_time_kernel(kernel,
                                                      nrepeat,
                                                      dim3(grid_size),
                                                      dim3(BlockSize),
                                                      0,
                                                      arg.p_a_grid_,
                                                      arg.p_b_grid_,
                                                      arg.p_c_grid_,
                                                      arg.a_grid_desc_k0_m_k1_,
                                                      arg.b_grid_desc_k0_n_k1_,
                                                      arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
                                                      arg.a_element_op_,
                                                      arg.b_element_op_,
                                                      arg.c_element_op_,
                                                      arg.block_2_ctile_map_);
                }
                else
                {
                    const auto kernel = kernel_gemm_xdlops_v2r3r1<
                        GridwiseGemm,
                        ADataType, // TODO: distiguish A/B datatype
                        CDataType,
                        remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                        remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
                        remove_reference_t<DeviceGemmXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
                        AElementwiseOperation,
                        BElementwiseOperation,
                        CElementwiseOperation,
                        remove_reference_t<DeviceGemmXdl::Block2CTileMap>,
                        true,
                        false>;

                    ave_time = launch_and_time_kernel(kernel,
                                                      nrepeat,
                                                      dim3(grid_size),
                                                      dim3(BlockSize),
                                                      0,
                                                      arg.p_a_grid_,
                                                      arg.p_b_grid_,
                                                      arg.p_c_grid_,
                                                      arg.a_grid_desc_k0_m_k1_,
                                                      arg.b_grid_desc_k0_n_k1_,
                                                      arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
                                                      arg.a_element_op_,
                                                      arg.b_element_op_,
                                                      arg.c_element_op_,
                                                      arg.block_2_ctile_map_);
                }
            }
            else
            {
                if(has_double_tail_k_block_loop)
                {
                    const auto kernel = kernel_gemm_xdlops_v2r3r1<
                        GridwiseGemm,
                        ADataType, // TODO: distiguish A/B datatype
                        CDataType,
                        remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                        remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
                        remove_reference_t<DeviceGemmXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
                        AElementwiseOperation,
                        BElementwiseOperation,
                        CElementwiseOperation,
                        remove_reference_t<DeviceGemmXdl::Block2CTileMap>,
                        false,
                        true>;

                    ave_time = launch_and_time_kernel(kernel,
                                                      nrepeat,
                                                      dim3(grid_size),
                                                      dim3(BlockSize),
                                                      0,
                                                      arg.p_a_grid_,
                                                      arg.p_b_grid_,
                                                      arg.p_c_grid_,
                                                      arg.a_grid_desc_k0_m_k1_,
                                                      arg.b_grid_desc_k0_n_k1_,
                                                      arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
                                                      arg.a_element_op_,
                                                      arg.b_element_op_,
                                                      arg.c_element_op_,
                                                      arg.block_2_ctile_map_);
                }
                else
                {
                    const auto kernel = kernel_gemm_xdlops_v2r3r1<
                        GridwiseGemm,
                        ADataType, // TODO: distiguish A/B datatype
                        CDataType,
                        remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                        remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
                        remove_reference_t<DeviceGemmXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
                        AElementwiseOperation,
                        BElementwiseOperation,
                        CElementwiseOperation,
                        remove_reference_t<DeviceGemmXdl::Block2CTileMap>,
                        false,
                        false>;

                    ave_time = launch_and_time_kernel(kernel,
                                                      nrepeat,
                                                      dim3(grid_size),
                                                      dim3(BlockSize),
                                                      0,
                                                      arg.p_a_grid_,
                                                      arg.p_b_grid_,
                                                      arg.p_c_grid_,
                                                      arg.a_grid_desc_k0_m_k1_,
                                                      arg.b_grid_desc_k0_n_k1_,
                                                      arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
                                                      arg.a_element_op_,
                                                      arg.b_element_op_,
                                                      arg.c_element_op_,
                                                      arg.block_2_ctile_map_);
                }
            }
#else
517
518
519
520
521
522
523
524
525
526

            if(has_main_k0_block_loop)
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
                    remove_reference_t<DeviceGemmXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
527
528
529
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
530
531
532
533
534
535
536
537
538
539
540
541
542
543
                    remove_reference_t<DeviceGemmXdl::Block2CTileMap>,
                    true>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
544
545
546
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
547
548
549
550
551
552
553
554
555
556
557
                                                  arg.block_2_ctile_map_);
            }
            else
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
                    remove_reference_t<DeviceGemmXdl::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
558
559
560
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
561
562
563
564
565
566
567
568
569
570
571
572
573
574
                    remove_reference_t<DeviceGemmXdl::Block2CTileMap>,
                    false>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
575
576
577
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
578
579
                                                  arg.block_2_ctile_map_);
            }
ltqin's avatar
ltqin committed
580
#endif
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            return ave_time;
        }

        // polymorphic
        float Run(const BaseArgument* p_arg, int nrepeat = 1) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    static bool IsSupportedArgument(const Argument& arg)
    {
        return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                           arg.b_grid_desc_k0_n_k1_,
                                           arg.c_grid_desc_m_n_,
                                           arg.M01_,
                                           arg.N01_);
    }

    // polymorphic
    bool IsSupportedArgument(const BaseArgument* p_arg) override
    {
        return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
    }

    static auto MakeArgument(const ADataType* p_a,
                             const BDataType* p_b,
                             CDataType* p_c,
                             index_t M,
                             index_t N,
                             index_t K,
                             index_t StrideA,
                             index_t StrideB,
Chao Liu's avatar
Chao Liu committed
620
621
622
623
                             index_t StrideC,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op)
624
    {
Chao Liu's avatar
Chao Liu committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        return Argument{p_a,
                        p_b,
                        p_c,
                        M,
                        N,
                        K,
                        StrideA,
                        StrideB,
                        StrideC,
                        1,
                        1,
                        a_element_op,
                        b_element_op,
                        c_element_op};
639
640
641
642
643
644
645
646
647
648
649
650
651
    }

    static auto MakeInvoker() { return Invoker{}; }

    // polymorphic
    std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
                                                      const void* p_b,
                                                      void* p_c,
                                                      index_t M,
                                                      index_t N,
                                                      index_t K,
                                                      index_t StrideA,
                                                      index_t StrideB,
Chao Liu's avatar
Chao Liu committed
652
653
654
655
                                                      index_t StrideC,
                                                      AElementwiseOperation a_element_op,
                                                      BElementwiseOperation b_element_op,
                                                      CElementwiseOperation c_element_op) override
656
657
658
659
660
661
662
663
664
665
666
    {
        return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
                                          static_cast<const BDataType*>(p_b),
                                          static_cast<CDataType*>(p_c),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          1,
Chao Liu's avatar
Chao Liu committed
667
668
669
670
                                          1,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op);
671
672
673
674
675
676
677
678
679
680
681
682
683
    }

    // polymorphic
    std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
    {
        return std::make_unique<Invoker>(Invoker{});
    }
};

} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif