gemm_xdl_fp64.cpp 10.7 KB
Newer Older
ltqin's avatar
ltqin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>

#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F64 = double;
using F32 = float;
qinletao's avatar
qinletao committed
26
using F16 = ck::half_t;
ltqin's avatar
ltqin committed
27

qinletao's avatar
qinletao committed
28
29
30
31
32
using ADataType   = double;
using BDataType   = double;
using CDataType   = double;
using AccDataType = double;

ltqin's avatar
ltqin committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;

static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;

// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout|           A|           B|           C|          GEMM| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########|  Type|  Type|  Type|    Type|        |        |        | Elementwise| Elementwise| Elementwise|Spacialization|  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| SrcDstVectorDim|       DstScalar|
//##########|      |      |      |        |        |        |        |   Operation|   Operation|   Operation|              |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |                |       PerVector|
//##########|      |      |      |        |        |        |        |            |            |            |              |      |      |      |      |   |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |                |                |
qinletao's avatar
qinletao committed
54
#if 0
qinletao's avatar
qinletao committed
55
             <  F64,   F64,   F64,     F64,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   64,    32,    32,     4,  1,   16,   16,    2,    2,     S<4, 16, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              1,              1,      true,     S<4, 16, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              1,              1,      true,               7,               1>;
qinletao's avatar
qinletao committed
56
#else
qinletao's avatar
qinletao committed
57
             <  F64,   F64,   F64,     F64,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   128,   128,    64,     4,  2,   16,   16,    4,    4,     S<4, 32, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              2,              2,      true,     S<4, 32, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,      true,               7,               1>;
qinletao's avatar
qinletao committed
58
59
60
61
62
63
64
65
66
67
#endif
    // clang-format on

    using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                            BDataType,
                                                                            CDataType,
                                                                            AccDataType,
                                                                            AElementOp,
                                                                            BElementOp,
                                                                            CElementOp>;
ltqin's avatar
ltqin committed
68

qinletao's avatar
qinletao committed
69
template <typename DataType>
qinletao's avatar
qinletao committed
70
std::ostream& show_2d_matrix(std::ostream& os, Tensor<DataType>& matrix)
qinletao's avatar
qinletao committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
{
    os << "[" << std::endl;
    for(int x = 0; x < matrix.mDesc.GetLengths()[0]; x++)
    {
        os << "[";
        for(int y = 0; y < matrix.mDesc.GetLengths()[1]; y++)
        {
            os << std::setw(4) << static_cast<float>(matrix(x, y));
        }
        os << "]" << std::endl;
    }
    os << "]";
    return os;
}

ltqin's avatar
ltqin committed
86
87
88
89
90
91
92
int main(int argc, char* argv[])
{
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;

    // GEMM shape
qinletao's avatar
qinletao committed
93
94
95
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;
ltqin's avatar
ltqin committed
96

qinletao's avatar
qinletao committed
97
98
99
    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;
ltqin's avatar
ltqin committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);

        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

qinletao's avatar
qinletao committed
149
    std::cout << "data type: " << typeid(ADataType{}).name() << std::endl;
ltqin's avatar
ltqin committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    case 2:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    default:
qinletao's avatar
qinletao committed
166
        a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
qinletao's avatar
qinletao committed
167
        b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
ltqin's avatar
ltqin committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

    // do GEMM
    auto gemm     = DeviceGemmInstance{};
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
                                      StrideC,
                                      a_element_op,
                                      b_element_op,
                                      c_element_op);

    if(!gemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    float ave_time = invoker.Run(argument, nrepeat);

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

qinletao's avatar
qinletao committed
229
#if 0
ltqin's avatar
ltqin committed
230
        {
qinletao's avatar
qinletao committed
231
232
233
234
            show_2d_matrix(std::cout << "a : ", a_m_k) << std::endl;
            show_2d_matrix(std::cout << "b: ", b_k_n) << std::endl;
            show_2d_matrix(std::cout << "c_device: ", c_m_n_device_result) << std::endl;
            show_2d_matrix(std::cout << "c_host  :", c_m_n_host_result) << std::endl;
ltqin's avatar
ltqin committed
235
        }
qinletao's avatar
qinletao committed
236
#endif
ltqin's avatar
ltqin committed
237
238
239
240
241
        ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
    }

    return 0;
}