profile_conv_bwd_weight_impl.hpp 10.6 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
#pragma once
JD's avatar
JD committed
5

Chao Liu's avatar
Chao Liu committed
6
7
8
9
10
#include "ck/ck.hpp"
#include <iomanip>
#include <iostream>
#include <typeinfo>

Chao Liu's avatar
Chao Liu committed
11
12
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
Chao Liu's avatar
Chao Liu committed
13
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
Chao Liu's avatar
Chao Liu committed
14
15
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

Chao Liu's avatar
Chao Liu committed
16
17
#include "ck/library/tensor_operation_instance/gpu/convolution_backward_weight.hpp"

Chao Liu's avatar
Chao Liu committed
18
#include "ck/library/utility/check_err.hpp"
Chao Liu's avatar
Chao Liu committed
19
20
21
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
Chao Liu's avatar
Chao Liu committed
22
#include "ck/library/utility/convolution_parameter.hpp"
Chao Liu's avatar
clean  
Chao Liu committed
23
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
24
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp"
25
26
27
28

namespace ck {
namespace profiler {

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
    std::cout << "[";
    for(int n = 0; n < ck::type_convert<int>(nhwc.mDesc.GetLengths()[0]); n++)
    {
        std::cout << "[";
        for(int hi = 0; hi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[2]); hi++)
        {
            std::cout << "[";
            for(int wi = 0; wi < ck::type_convert<int>(nhwc.mDesc.GetLengths()[3]); wi++)
            {
                std::cout << "[";
                for(int c = 0; c < ck::type_convert<int>(nhwc.mDesc.GetLengths()[1]); c++)
                {
                    std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << "  ";
                }
                std::cout << "]";
            }
            std::cout << "]";
        }
        std::cout << "]";
    }
    std::cout << "]";
}

template <ck::index_t NDimSpatial,
56
57
          typename InLayout,
          typename WeiLayout,
58
59
60
61
          typename OutLayout,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType>
62
63
64
bool profile_conv_bwd_weight_impl(int do_verification,
                                  int init_method,
                                  bool do_log,
JD's avatar
JD committed
65
                                  bool time_kernel,
Chao Liu's avatar
clean  
Chao Liu committed
66
                                  const ck::tensor_operation::device::ConvParams& conv_param,
67
68
                                  ck::index_t split_k)
{
Chao Liu's avatar
Chao Liu committed
69
70
71
72
73
74
75
76
    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

Chao Liu's avatar
clean  
Chao Liu committed
77
78
79
    const auto in_desc  = ck::utils::conv::get_input_host_tensor_descriptor<InLayout>(conv_param);
    const auto wei_desc = ck::utils::conv::get_weight_host_tensor_descriptor<WeiLayout>(conv_param);
    const auto out_desc = ck::utils::conv::get_output_host_tensor_descriptor<OutLayout>(conv_param);
80
81
82
83
84
85
86
87
88

    Tensor<InDataType> input(in_desc);
    Tensor<WeiDataType> weight_host_result(wei_desc);
    Tensor<WeiDataType> weight_device_result(wei_desc);
    Tensor<OutDataType> output(out_desc);

    std::cout << "input: " << input.mDesc << std::endl;
    std::cout << "weight: " << weight_host_result.mDesc << std::endl;
    std::cout << "output: " << output.mDesc << std::endl;
89
90
91
92
93

    switch(init_method)
    {
    case 0: break;
    case 1:
Chao Liu's avatar
Chao Liu committed
94
95
        input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
        output.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
96
97
        break;
    default:
Chao Liu's avatar
Chao Liu committed
98
99
        input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
        output.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.5, 0.5});
100
101
    }

102
103
104
105
106
107
108
    DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weight_device_result.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());

    in_device_buf.ToDevice(input.mData.data());
    out_device_buf.ToDevice(output.mData.data());

109
110
    if(do_verification)
    {
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdWeight<NDimSpatial,
                                                                           InLayout,
                                                                           WeiLayout,
                                                                           OutLayout,
                                                                           InDataType,
                                                                           WeiDataType,
                                                                           OutDataType,
                                                                           InElementOp,
                                                                           WeiElementOp,
                                                                           OutElementOp>{};

        auto ref_invoker = ref_conv.MakeInvoker();

        auto ref_argument = ref_conv.MakeArgument(input,
                                                  weight_host_result,
                                                  output,
Chao Liu's avatar
clean  
Chao Liu committed
127
128
129
130
                                                  conv_param.conv_filter_strides_,
                                                  conv_param.conv_filter_dilations_,
                                                  conv_param.input_left_pads_,
                                                  conv_param.input_right_pads_,
131
132
133
134
135
136
137
                                                  in_element_op,
                                                  wei_element_op,
                                                  out_element_op);

        ref_invoker.Run(ref_argument);
    }

Chao Liu's avatar
Chao Liu committed
138
139
140
141
142
143
144
145
146
147
    using DeviceOp = ck::tensor_operation::device::DeviceConvBwdWeight<NDimSpatial,
                                                                       InLayout,
                                                                       WeiLayout,
                                                                       OutLayout,
                                                                       InDataType,
                                                                       WeiDataType,
                                                                       OutDataType,
                                                                       InElementOp,
                                                                       WeiElementOp,
                                                                       OutElementOp>;
148

Chao Liu's avatar
Chao Liu committed
149
150
151
152
153
    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
154

155
156
    std::string best_op_name;
    float best_avg_time   = 0;
157
158
159
160
161
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
    bool pass = true;
JD's avatar
JD committed
162

163
    for(auto& op_ptr : op_ptrs)
164
    {
165
166
167
168
        auto argument_ptr =
            op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                        static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                                        static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
Chao Liu's avatar
clean  
Chao Liu committed
169
170
171
172
173
174
175
176
177
178
                                        conv_param.N_,
                                        conv_param.K_,
                                        conv_param.C_,
                                        conv_param.input_spatial_lengths_,
                                        conv_param.filter_spatial_lengths_,
                                        conv_param.output_spatial_lengths_,
                                        conv_param.conv_filter_strides_,
                                        conv_param.conv_filter_dilations_,
                                        conv_param.input_left_pads_,
                                        conv_param.input_right_pads_,
179
180
181
182
183
                                        in_element_op,
                                        wei_element_op,
                                        out_element_op,
                                        split_k);

Chao Liu's avatar
Chao Liu committed
184
        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
185
        {
Chao Liu's avatar
Chao Liu committed
186
187
188
            // using atomic add, so need to reset input
            wei_device_buf.SetZero();

Chao Liu's avatar
Chao Liu committed
189
            std::string op_name = op_ptr->GetTypeString();
JD's avatar
JD committed
190

Chao Liu's avatar
Chao Liu committed
191
            auto invoker_ptr = op_ptr->MakeInvokerPointer();
192

Chao Liu's avatar
Chao Liu committed
193
194
            float avg_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
195

Chao Liu's avatar
clean  
Chao Liu committed
196
197
            std::size_t flop      = conv_param.GetFlops();
            std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
198

Chao Liu's avatar
Chao Liu committed
199
200
            float tflops     = static_cast<float>(flop) / 1.E9 / avg_time;
            float gb_per_sec = num_btype / 1.E6 / avg_time;
201

Chao Liu's avatar
Chao Liu committed
202
203
            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << op_name << std::endl;
204

Chao Liu's avatar
Chao Liu committed
205
206
207
208
209
210
211
            if(tflops > best_tflops)
            {
                best_op_name    = op_name;
                best_tflops     = tflops;
                best_avg_time   = avg_time;
                best_gb_per_sec = gb_per_sec;
            }
212

Chao Liu's avatar
Chao Liu committed
213
214
215
            if(do_verification)
            {
                wei_device_buf.FromDevice(weight_device_result.mData.data());
216

Chao Liu's avatar
Chao Liu committed
217
218
                pass = pass &
                       ck::utils::check_err(weight_device_result.mData, weight_host_result.mData);
219

Chao Liu's avatar
Chao Liu committed
220
221
222
223
224
                if(do_log)
                {
                    std::cout << "in : ";
                    show_data_nhwc_layout(output);
                    std::cout << std::endl;
225

Chao Liu's avatar
Chao Liu committed
226
227
228
                    std::cout << "wei: ";
                    show_data_nhwc_layout(weight_host_result);
                    std::cout << std::endl;
JD's avatar
JD committed
229

Chao Liu's avatar
Chao Liu committed
230
231
232
                    std::cout << "out  : ";
                    show_data_nhwc_layout(input);
                    std::cout << std::endl;
233

Chao Liu's avatar
Chao Liu committed
234
235
236
237
                    std::cout << "wei_device: ";
                    show_data_nhwc_layout(weight_device_result);
                    std::cout << std::endl;
                }
238
239
            }
        }
Chao Liu's avatar
Chao Liu committed
240
241
242
243
        else
        {
            std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
        }
244
245
    }

Chao Liu's avatar
Chao Liu committed
246
247
248
    std::cout << "Best configuration parameters:"
              << "\nname: " << best_op_name << "\navg_time: " << best_avg_time
              << "\ntflops: " << best_tflops << "\nGB/s: " << best_gb_per_sec << std::endl;
249
250
251
252
253
254

    return pass;
}

} // namespace profiler
} // namespace ck