buffer_view_impl_global.hpp 11.5 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include "ck/ck.hpp"
#include "ck/utility/buffer_view.hpp"
#include "ck/utility/amd_buffer_addressing.hpp"

namespace ck {

// Address Space: Global
// T may be scalar or vector
// X may be scalar or vector
// T and X have same scalar type
// X contains multiple T
// FIXME: InvalidElementUseNumericalZeroValue and invalid_element_value_ should be a property of
//        transforms of TensorView/Tensor
template <typename T,
          typename BufferSizeType,
          bool InvalidElementUseNumericalZeroValue,
          AmdBufferCoherenceEnum Coherence>
struct BufferView<AddressSpaceEnum::Global,
                  T,
                  BufferSizeType,
                  InvalidElementUseNumericalZeroValue,
                  Coherence>
{
    using type = T;

    T* p_data_ = nullptr;
    BufferSizeType buffer_size_;
    remove_cvref_t<T> invalid_element_value_ = T{0};

    __host__ __device__ constexpr BufferView() : p_data_{}, buffer_size_{}, invalid_element_value_{}
    {
    }

    __host__ __device__ constexpr BufferView(T* p_data, BufferSizeType buffer_size)
        : p_data_{p_data}, buffer_size_{buffer_size}, invalid_element_value_{0}
    {
    }

    __host__ __device__ constexpr BufferView(T* p_data,
                                             BufferSizeType buffer_size,
                                             T invalid_element_value)
        : p_data_{p_data}, buffer_size_{buffer_size}, invalid_element_value_{invalid_element_value}
    {
    }

    __device__ static constexpr AddressSpaceEnum GetAddressSpace()
    {
        return AddressSpaceEnum::Global;
    }

    // i is offset of T
    // FIXME: doesn't do is_valid check
    __device__ constexpr const T& operator[](index_t i) const { return p_data_[i]; }

    // i is offset of T
    // FIXME: doesn't do is_valid check
    __device__ constexpr T& operator()(index_t i) { return p_data_[i]; }

    // i is offset of T, not X. i should be aligned to X
    template <typename X,
              typename enable_if<is_same<typename scalar_type<remove_cvref_t<X>>::type,
                                         typename scalar_type<remove_cvref_t<T>>::type>::value,
                                 bool>::type = false>
    __device__ constexpr auto Get(index_t i, bool is_valid_element) const
    {
        // X contains multiple T
        constexpr index_t scalar_per_t_vector = scalar_type<remove_cvref_t<T>>::vector_size;

        constexpr index_t scalar_per_x_vector = scalar_type<remove_cvref_t<X>>::vector_size;

        static_assert(scalar_per_x_vector % scalar_per_t_vector == 0,
                      "wrong! X should contain multiple T");

#if CK_USE_AMD_BUFFER_LOAD
        bool constexpr use_amd_buffer_addressing = true;
#else
        bool constexpr use_amd_buffer_addressing = false;
#endif

        if constexpr(use_amd_buffer_addressing)
        {
            constexpr index_t t_per_x = scalar_per_x_vector / scalar_per_t_vector;

            if constexpr(InvalidElementUseNumericalZeroValue)
            {
                return amd_buffer_load_invalid_element_return_zero<remove_cvref_t<T>,
                                                                   t_per_x,
                                                                   Coherence>(
                    p_data_, i, is_valid_element, buffer_size_);
            }
            else
            {
                return amd_buffer_load_invalid_element_return_customized_value<remove_cvref_t<T>,
                                                                               t_per_x,
                                                                               Coherence>(
                    p_data_, i, is_valid_element, buffer_size_, invalid_element_value_);
            }
        }
        else
        {
            if(is_valid_element)
            {
#if CK_EXPERIMENTAL_USE_MEMCPY_FOR_VECTOR_ACCESS
                X tmp;

                __builtin_memcpy(&tmp, &(p_data_[i]), sizeof(X));

                return tmp;
#else
                return *c_style_pointer_cast<const X*>(&p_data_[i]);
#endif
            }
            else
            {
                if constexpr(InvalidElementUseNumericalZeroValue)
                {
                    return X{0};
                }
                else
                {
                    return X{invalid_element_value_};
                }
            }
        }
    }

    // i is offset of T, not X. i should be aligned to X
    template <InMemoryDataOperationEnum Op,
              typename X,
              typename enable_if<is_same<typename scalar_type<remove_cvref_t<X>>::type,
                                         typename scalar_type<remove_cvref_t<T>>::type>::value,
                                 bool>::type = false>
    __device__ void Update(index_t i, bool is_valid_element, const X& x)
    {
        if constexpr(Op == InMemoryDataOperationEnum::Set)
        {
            this->template Set<X>(i, is_valid_element, x);
        }
        else if constexpr(Op == InMemoryDataOperationEnum::AtomicAdd)
        {
            this->template AtomicAdd<X>(i, is_valid_element, x);
        }
        else if constexpr(Op == InMemoryDataOperationEnum::AtomicMax)
        {
            this->template AtomicMax<X>(i, is_valid_element, x);
        }
        // FIXME: remove InMemoryDataOperationEnum::Add
        else if constexpr(Op == InMemoryDataOperationEnum::Add)
        {
            auto tmp = this->template Get<X>(i, is_valid_element);
            this->template Set<X>(i, is_valid_element, x + tmp);
            // tmp += x;
            // this->template Set<X>(i, is_valid_element, tmp);
        }
    }

    // i is offset of T, not X. i should be aligned to X
    template <typename X,
              typename enable_if<is_same<typename scalar_type<remove_cvref_t<X>>::type,
                                         typename scalar_type<remove_cvref_t<T>>::type>::value,
                                 bool>::type = false>
    __device__ void Set(index_t i, bool is_valid_element, const X& x)
    {
        // X contains multiple T
        constexpr index_t scalar_per_t_vector = scalar_type<remove_cvref_t<T>>::vector_size;

        constexpr index_t scalar_per_x_vector = scalar_type<remove_cvref_t<X>>::vector_size;

        static_assert(scalar_per_x_vector % scalar_per_t_vector == 0,
                      "wrong! X should contain multiple T");

#if CK_USE_AMD_BUFFER_STORE
        bool constexpr use_amd_buffer_addressing = true;
#else
        bool constexpr use_amd_buffer_addressing = false;
#endif

        if constexpr(use_amd_buffer_addressing)
        {
            constexpr index_t t_per_x = scalar_per_x_vector / scalar_per_t_vector;

            amd_buffer_store<remove_cvref_t<T>, t_per_x, Coherence>(
                x, p_data_, i, is_valid_element, buffer_size_);
        }
        else
        {
            if(is_valid_element)
            {
#if CK_EXPERIMENTAL_USE_MEMCPY_FOR_VECTOR_ACCESS
                X tmp = x;

                __builtin_memcpy(&(p_data_[i]), &tmp, sizeof(X));
#else
                *c_style_pointer_cast<X*>(&p_data_[i]) = x;
#endif
            }
        }
    }

    template <typename X,
              typename enable_if<is_same<typename scalar_type<remove_cvref_t<X>>::type,
                                         typename scalar_type<remove_cvref_t<T>>::type>::value,
                                 bool>::type = false>
    __device__ void AtomicAdd(index_t i, bool is_valid_element, const X& x)
    {
        using scalar_t = typename scalar_type<remove_cvref_t<T>>::type;

        // X contains multiple T
        constexpr index_t scalar_per_t_vector = scalar_type<remove_cvref_t<T>>::vector_size;

        constexpr index_t scalar_per_x_vector = scalar_type<remove_cvref_t<X>>::vector_size;

        static_assert(scalar_per_x_vector % scalar_per_t_vector == 0,
                      "wrong! X should contain multiple T");

        static_assert(GetAddressSpace() == AddressSpaceEnum::Global, "only support global mem");

#if CK_USE_AMD_BUFFER_ATOMIC_ADD_INTEGER && CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT
        bool constexpr use_amd_buffer_addressing =
            is_same_v<remove_cvref_t<scalar_t>, int32_t> ||
            is_same_v<remove_cvref_t<scalar_t>, float> ||
            (is_same_v<remove_cvref_t<scalar_t>, half_t> && scalar_per_x_vector % 2 == 0);
#elif CK_USE_AMD_BUFFER_ATOMIC_ADD_INTEGER && (!CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT)
        bool constexpr use_amd_buffer_addressing = is_same_v<remove_cvref_t<scalar_t>, int32_t>;
#elif(!CK_USE_AMD_BUFFER_ATOMIC_ADD_INTEGER) && CK_USE_AMD_BUFFER_ATOMIC_ADD_FLOAT
        bool constexpr use_amd_buffer_addressing =
            is_same_v<remove_cvref_t<scalar_t>, float> ||
            (is_same_v<remove_cvref_t<scalar_t>, half_t> && scalar_per_x_vector % 2 == 0);
#else
        bool constexpr use_amd_buffer_addressing = false;
#endif

        if constexpr(use_amd_buffer_addressing)
        {
            constexpr index_t t_per_x = scalar_per_x_vector / scalar_per_t_vector;

242
            amd_buffer_atomic_add<remove_cvref_t<T>, t_per_x>(
Chao Liu's avatar
Chao Liu committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
                x, p_data_, i, is_valid_element, buffer_size_);
        }
        else
        {
            if(is_valid_element)
            {
                atomic_add<X>(c_style_pointer_cast<X*>(&p_data_[i]), x);
            }
        }
    }

    template <typename X,
              typename enable_if<is_same<typename scalar_type<remove_cvref_t<X>>::type,
                                         typename scalar_type<remove_cvref_t<T>>::type>::value,
                                 bool>::type = false>
    __device__ void AtomicMax(index_t i, bool is_valid_element, const X& x)
    {
        // X contains multiple T
        constexpr index_t scalar_per_t_vector = scalar_type<remove_cvref_t<T>>::vector_size;

        constexpr index_t scalar_per_x_vector = scalar_type<remove_cvref_t<X>>::vector_size;

        static_assert(scalar_per_x_vector % scalar_per_t_vector == 0,
                      "wrong! X should contain multiple T");

        static_assert(GetAddressSpace() == AddressSpaceEnum::Global, "only support global mem");

#if CK_USE_AMD_BUFFER_ATOMIC_MAX_FLOAT64
        using scalar_t                           = typename scalar_type<remove_cvref_t<T>>::type;
        bool constexpr use_amd_buffer_addressing = is_same_v<remove_cvref_t<scalar_t>, double>;
#else
        bool constexpr use_amd_buffer_addressing = false;
#endif

        if constexpr(use_amd_buffer_addressing)
        {
            constexpr index_t t_per_x = scalar_per_x_vector / scalar_per_t_vector;

            amd_buffer_atomic_max<remove_cvref_t<T>, t_per_x>(
                x, p_data_, i, is_valid_element, buffer_size_);
        }
        else if(is_valid_element)
        {
            atomic_max<X>(c_style_pointer_cast<X*>(&p_data_[i]), x);
        }
    }

    // FIXME: remove
    __device__ static constexpr bool IsStaticBuffer() { return false; }

    // FIXME: remove
    __device__ static constexpr bool IsDynamicBuffer() { return true; }

    __host__ __device__ void Print() const
    {
        printf("BufferView{");

        // AddressSpace
        printf("AddressSpace: Global, ");

        // p_data_
        printf("p_data_: %p, ", static_cast<void*>(const_cast<remove_cvref_t<T>*>(p_data_)));

        // buffer_size_
        printf("buffer_size_: ");
        print(buffer_size_);
        printf(", ");

        // invalid_element_value_
        printf("invalid_element_value_: ");
        print(invalid_element_value_);

        printf("}");
    }
};

} // namespace ck