contraction_scale_xdl_fp64.cpp 20.3 KB
Newer Older
zjing14's avatar
zjing14 committed
1
// SPDX-License-Identifier: MIT
Illia Silin's avatar
Illia Silin committed
2
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
zjing14's avatar
zjing14 committed
3

4
5
6
7
8
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

zjing14's avatar
zjing14 committed
9
#include "ck/ck.hpp"
10
11
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
zjing14's avatar
zjing14 committed
12
13
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

14
15
16
17
18
19
20
21
22
23
24
25
26
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/numeric.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F64 = double;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;
zjing14's avatar
zjing14 committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

using ADataType        = F64;
using BDataType        = F64;
using AccDataType      = F64;
using CShuffleDataType = F64;
using DsDataType       = ck::Tuple<>;
using EDataType        = F64;

static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;

using AElementOp   = ck::tensor_operation::element_wise::PassThrough;
using BElementOp   = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Scale;

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;

// clang-format off
using DeviceOpInstanceKKN = ck::tensor_operation::device::
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F64,   F64,     F64,      F64, DsDataType,   F64,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   128,   128,    16,   2,   2,   16,   16,    4,    4,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              2,              2,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,         1,           1,           1,              S<1, 16, 1, 16>,               1>;

using DeviceOpInstanceKNN = ck::tensor_operation::device::
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F64,   F64,     F64,      F64, DsDataType,   F64,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   128,   128,    16,   2,   1,   16,   16,    4,    4,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              2,              2,         1,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              2,              1,         0,           1,           1,              S<1, 16, 1, 16>,               1>;

using DeviceOpInstanceMKN = ck::tensor_operation::device::
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F64,   F64,     F64,      F64, DsDataType,   F64,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   128,   128,    16,   1,   2,   16,   16,    4,    4,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              2,              1,         0,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,         1,           1,           1,              S<1, 16, 1, 16>,               1>;

using DeviceOpInstanceMNN = ck::tensor_operation::device::
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F64,   F64,     F64,      F64, DsDataType,   F64,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   128,   128,    16,   1,   1,   16,   16,    4,    4,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              2,              1,         0,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              2,              1,         0,           1,           1,              S<1, 16, 1, 16>,               1>;
// clang-format on
zjing14's avatar
zjing14 committed
74
75
76

using DeviceOpInstance = DeviceOpInstanceKKN;

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
int main(int argc, char* argv[])
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;

    // A[M0, M1, K0, K1]
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
    // B[N0, N1, K0, K1]
    std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
    std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
    // E[M0, M1, N0, N1]
    std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};

    float scale = 1.f;

    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else if(argc == 23)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);

        const ck::index_t M0 = std::stoi(argv[4]);
        const ck::index_t M1 = std::stoi(argv[5]);

        const ck::index_t N0 = std::stoi(argv[6]);
        const ck::index_t N1 = std::stoi(argv[7]);

        const ck::index_t K0 = std::stoi(argv[8]);
        const ck::index_t K1 = std::stoi(argv[9]);

        a_ms_ks_lengths = {M0, M1, K0, K1};
        a_ms_ks_strides = {
            std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};

        b_ns_ks_lengths = {N0, N1, K0, K1};
        b_ns_ks_strides = {
            std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};

        e_ms_ns_lengths = {M0, M1, N0, N1};
        e_ms_ns_strides = {
            std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};

        scale = std::stof(argv[22]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=no, 1=yes)\n");
        printf("arg4 to 9: M0, M1, N0, N1, K0, K1\n");
        printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
        printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
        printf("arg18 to 21: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
        printf("arg22: scale\n");
        exit(0);
    }

    Tensor<ADataType> a_ms_ks(a_ms_ks_lengths, a_ms_ks_strides);
    Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
    Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
    Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);

    std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
    std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
    std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    default:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
    DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());

    a_device_buf.ToDevice(a_ms_ks.mData.data());
    b_device_buf.ToDevice(b_ns_ks.mData.data());

    // set zero
    e_device_buf.SetZero();

    auto a_element_op   = AElementOp{};
    auto b_element_op   = BElementOp{};
    auto cde_element_op = CDEElementOp{scale};

    // device operation
    auto op       = DeviceOpInstance{};
    auto invoker  = op.MakeInvoker();
    auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
                                    b_device_buf.GetDeviceBuffer(),
                                    std::array<const void*, 0>{},
                                    e_device_buf.GetDeviceBuffer(),
                                    a_ms_ks_lengths,
                                    a_ms_ks_strides,
                                    b_ns_ks_lengths,
                                    b_ns_ks_strides,
                                    std::array<std::vector<ck::index_t>, 0>{},
                                    std::array<std::vector<ck::index_t>, 0>{},
                                    e_ms_ns_lengths,
                                    e_ms_ns_strides,
                                    a_element_op,
                                    b_element_op,
                                    cde_element_op);

    if(!op.IsSupportedArgument(argument))
    {
        std::cout << op.GetTypeString() << " does not support this problem" << std::endl;

        return 0;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

    ck::index_t M =
        ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});

    ck::index_t N = ck::accumulate_n<ck::index_t>(
        e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});

    ck::index_t K = ck::accumulate_n<ck::index_t>(
        a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + +sizeof(EDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << op.GetTypeString() << std::endl;

    e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());

    if(do_verification)
    {
        Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);

        using ReferenceOpInstance =
            ck::tensor_operation::host::ReferenceContraction_M2_N2_K2<NumDimM,
                                                                      NumDimN,
                                                                      NumDimK,
                                                                      ADataType,
                                                                      BDataType,
                                                                      CShuffleDataType,
                                                                      AccDataType,
                                                                      AElementOp,
                                                                      BElementOp>;

        auto ref_op      = ReferenceOpInstance{};
        auto ref_invoker = ref_op.MakeInvoker();

        Tensor<float> empty_tensor(std::vector<ck::index_t>{}, std::vector<ck::index_t>{});
        auto ref_argument =
            ref_op.MakeArgument(a_ms_ks, b_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op);

        ref_invoker.Run(ref_argument);

        for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
        {
            for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
            {
                for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
                {
                    for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
                    {
                        cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
                                       c_ms_ns_host_result(m0, m1, n0, n1));
                    }
                }
            }
        }

        return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
    }
zjing14's avatar
zjing14 committed
274

275
276
    return 0;
}