wmma_op.cpp 5.62 KB
Newer Older
aska-0096's avatar
aska-0096 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "ck/ck.hpp"
#include "ck/utility/amd_wmma.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"

namespace ck {
__global__ void matmul(const half_t* a, const half_t* b, float* c)
{
    const int lIdx = threadIdx.x;

    // a and b fragments are stored in 8 VGPRs each, in packed format, so 16 elements each for a and
    // b a_frag will store one column of the 16x16 matrix tile b_frag will store one row of the
    // 16x16 matrix tile
    half16_t a_frag = {};
    half16_t b_frag = {};
    // initialize c fragment to 0
    StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 8, true> c_thread_buf_;

    // lane is (0-31) mod 16 instead of 0-31 due to matrix replication in gfx11
    // see https://atlvsp3.amd.com/sp3_gfx11_5_instructions.pdf page 482
    // TODO: remove this dependency in gfx12 https://ontrack-internal.amd.com/browse/DEGFXSP3-101
    const int lane = lIdx % 16;

    for(int ele = 0; ele < 16; ++ele)
    {
        b_frag[ele] = b[16 * lane + ele];
    }
    // follow origin design
    for(int ele = 0; ele < 16; ++ele)
    {
        a_frag[ele] = a[16 * lane + ele];
    }

    // sync threads, similar to mma_sync
    __syncthreads();
    intrin_wmma_f32_16x16x16_f16_w32<16, 16>::Run(
        a_frag, b_frag, c_thread_buf_.GetVectorTypeReference(Number<0>{}));
    __syncthreads();
    // wait for results, similar to mma_sync
    static_for<0, 8, 1>{}([&](auto ele) {
        const int r = ele * 2 + (lIdx / 16);
        // store results from unpacked c_thread_buf_ output
        c[16 * r + lane] = c_thread_buf_[Number<ele>{}];
    });
}

__global__ void matmul_swizzle_a(const half_t* a, const half_t* b, float* c)
{
    const int lIdx = threadIdx.x;

    half16_t a_frag = {};
    half16_t b_frag = {};
    StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 8, true> c_thread_buf_;

    const int lane = lIdx % 16;

    for(int ele = 0; ele < 16; ++ele)
    {
        b_frag[ele] = b[16 * lane + ele];
    }

    const int offset_m = (((lane & 1) << 3) | (lane >> 1));
    for(int ele = 0; ele < 16; ++ele)
    {
        a_frag[ele] = a[16 * offset_m + ele];
    }

    __syncthreads();
    intrin_wmma_f32_16x16x16_f16_w32<16, 16>::Run(
        a_frag, b_frag, c_thread_buf_.GetVectorTypeReference(Number<0>{}));
    __syncthreads();

    static_for<0, 8, 1>{}([&](auto ele) {
        const int blk                   = lIdx / 16;
        const int r                     = ele;
        c[16 * 8 * blk + 16 * r + lane] = c_thread_buf_[Number<ele>{}];
    });
}
} // namespace ck

int main(int, char*[])
{
    std::vector<float> host_a(16 * 16);
    std::vector<float> host_b(16 * 16);
    std::vector<float> host_c(16 * 16);
    std::vector<float> wmma_c(16 * 16);
    std::vector<float> wmma_c_swizzle_a(16 * 16);
    uint64_t num_element = 256;

    // generate matrix a
    for(int i_m = 0; i_m < 16; i_m++)
    {
        for(int i_k = 0; i_k < 16; i_k++)
        {
            host_a[i_m * 16 + i_k] = float(i_m + 1) / 99.0 + (float(i_k + 1) / 100);
            // host_a[i_m * 16 + i_k] = float(i_k);
        }
    }

    // generate matrix b
    for(int i_n = 0; i_n < 16; i_n++)
    {
        for(int i_k = 0; i_k < 16; i_k++)
        {
            host_b[i_n * 16 + i_k] = float(i_n + 1) / 98.0 + (float(i_k + 1) / 100);
            // host_b[i_n * 16 + i_k] = 1.0;
        }
    }

    // run mk_nk_mn gemm on cpu
    for(int i_m = 0; i_m < 16; i_m++)
    {
        for(int i_n = 0; i_n < 16; i_n++)
        {
            for(int i_k = 0; i_k < 16; i_k++)
            {
                host_c[i_m * 16 + i_n] += host_a[i_m * 16 + i_k] * host_b[i_n * 16 + i_k];
            }
        }
    }

    DeviceMem device_a(sizeof(ck::half_t) * num_element);
    DeviceMem device_b(sizeof(ck::half_t) * num_element);
    DeviceMem device_c(sizeof(float) * num_element);

    std::vector<ck::half_t> fp16_a(16 * 16);
    std::vector<ck::half_t> fp16_b(16 * 16);
    // convert fp32 a and b into fp16 on host
    for(int i = 0; i < 16 * 16; i++)
    {
        fp16_a[i] = __float2half_rn(host_a[i]);
        fp16_b[i] = __float2half_rn(host_b[i]);
    }

    device_a.ToDevice(fp16_a.data());
    device_b.ToDevice(fp16_b.data());

    // run single wave wmma on GPU
    ck::matmul<<<1, 32>>>(static_cast<const ck::half_t*>(device_a.GetDeviceBuffer()),
                          static_cast<const ck::half_t*>(device_b.GetDeviceBuffer()),
                          static_cast<float*>(device_c.GetDeviceBuffer()));

    device_c.FromDevice(wmma_c.data());

    // run single wave wmma_swizzle_a on GPU
    ck::matmul_swizzle_a<<<1, 32>>>(static_cast<const ck::half_t*>(device_a.GetDeviceBuffer()),
                                    static_cast<const ck::half_t*>(device_b.GetDeviceBuffer()),
                                    static_cast<float*>(device_c.GetDeviceBuffer()));
    device_c.FromDevice(wmma_c_swizzle_a.data());

aska-0096's avatar
aska-0096 committed
161
162
163
    // result check
    bool res           = true;
    bool res_swizzle_a = true;
aska-0096's avatar
aska-0096 committed
164
    res                = ck::utils::check_err(wmma_c, host_c, "Error: Incorrect results!", 1e-2);
aska-0096's avatar
aska-0096 committed
165
    res_swizzle_a =
aska-0096's avatar
aska-0096 committed
166
167
168
169
170
171
172
173
174
175
176
177
178
        ck::utils::check_err(wmma_c_swizzle_a, host_c, "Error: Incorrect results!", 1e-2);

    if(res && res_swizzle_a)
    {
        std::cout << "test single wave wmma: Pass" << std::endl;
        return 0;
    }
    else
    {
        std::cout << "test single wave wmma: Fail" << std::endl;
        return -1;
    }
}