profile_contraction.cpp 8.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <vector>

#include "profiler/profile_contraction_impl.hpp"
#include "profiler_operation_registry.hpp"

enum struct ContractionMatrixLayout
{
    MK_KN_MN_MN, // 0
    MK_NK_MN_MN, // 1
    KM_KN_MN_MN, // 2
    KM_NK_MN_MN, // 3
};

enum struct ContractionDataType
{
    F32_F32_F32_F32, // 0
    F64_F64_F64_F64, // 1
};

#define OP_NAME "contraction"
#define OP_DESC "CONTRACTION"

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using Scale    = ck::tensor_operation::element_wise::Scale;

static void print_helper_msg()
{
    std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
              << "arg2: data type (0: fp32; 1: f64)\n"
              << "arg3: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
                 "D[m0, m1, n0, n1] = C[m0, m1, n0, n1];\n"
              << "                     1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
                 "D[m0, m1, n0, n1] = C[m0, m1, n0, n1];\n"
              << "                     2: A[k0, k1, m0, m1] * B[k0, k1, n0, n1] + "
                 "D[m0, m1, n0, n1] = C[m0, m1, n0, n1];\n"
              << "                     3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
                 "D[m0, m1, n0, n1] = C[m0, m1, n0, n1])\n"
              << "arg4: verification (0: no; 1: yes)\n"
              << "arg5: initialization (0: no init; 1: integer value; 2: decimal "
              << "value)\n"
              << "arg6: print tensor value (0: no; 1: yes)\n"
              << "arg7: time kernel (0: no, 1: yes)\n"
              << "arg8 and arg9(optional): alpha and beta for bilinear (pass only "
              << "alpha for scale)\n"
              << "arg9/10 to 14/15: M0, M1, N0, N1, K0, K1\n"
              << "arg15/16 to 30/31: Strides for A, B, C and D (skip for default)\n"
              << std::endl;
}

void collect_index_params(char* argv[],
                          std::vector<ck::index_t>& params,
                          const int from,
                          const int num)
{
    for(int p = from; p < from + num; p++)
        params.push_back(std::stoi(argv[p]));
}

// Defualt strides for row-major: {Dim1 * Dim2 * Dim3, Dim2 * Dim3, Dim3, 1}
// Defualt strides for column-major: {Dim1, 1, Dim0 * Dim1 * Dim3, Dim0 * Dim1}
void assign_default_strides(Row, std::vector<ck::index_t>& strides, std::vector<ck::index_t> dims)
{
    strides = {dims[1] * dims[2] * dims[3], dims[2] * dims[3], dims[3], 1};
}

void assign_default_strides(Col, std::vector<ck::index_t>& strides, std::vector<ck::index_t> dims)
{
    strides = {dims[1], 1, dims[0] * dims[1] * dims[3], dims[0] * dims[1]};
}

int profile_contraction(int argc, char* argv[])
{
    const bool all_parameters_bilinear        = argc == 32;
    const bool all_parameters_scale           = argc == 31;
    const bool parameters_wo_strides_bilinear = argc == 16;
    const bool parameters_wo_strides_scale    = argc == 15;
    const bool default_strides = parameters_wo_strides_bilinear || parameters_wo_strides_scale;
    const bool with_bilinear   = all_parameters_bilinear || parameters_wo_strides_bilinear;

    if(!(all_parameters_bilinear || all_parameters_scale || parameters_wo_strides_bilinear ||
         parameters_wo_strides_scale))
    {
        print_helper_msg();
        exit(1);
    }

    const auto data_type       = static_cast<ContractionDataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<ContractionMatrixLayout>(std::stoi(argv[3]));
    const bool do_verification = std::stoi(argv[4]);
    const int init_method      = std::stoi(argv[5]);
    const bool do_log          = std::stoi(argv[6]);
    const bool time_kernel     = std::stoi(argv[7]);
    const float alpha          = std::stof(argv[8]);
    const float beta           = with_bilinear ? std::stof(argv[9]) : 0;

    std::vector<ck::index_t> M;
    std::vector<ck::index_t> N;
    std::vector<ck::index_t> K;
    const int dims_arg_num = with_bilinear ? 10 : 9;
    collect_index_params(argv, M, dims_arg_num, 2);
    collect_index_params(argv, N, dims_arg_num + 2, 2);
    collect_index_params(argv, K, dims_arg_num + 4, 2);

    std::vector<ck::index_t> StridesA;
    std::vector<ck::index_t> StridesB;
    std::vector<ck::index_t> StridesC;
    std::vector<ck::index_t> StridesD;
    if(!default_strides)
    {
        collect_index_params(argv, StridesA, dims_arg_num + 6, 4);
        collect_index_params(argv, StridesB, dims_arg_num + 10, 4);
        collect_index_params(argv, StridesC, dims_arg_num + 14, 4);
        collect_index_params(argv, StridesD, dims_arg_num + 18, 4);
    }

    using F32 = float;
    using F64 = double;

    auto profile = [&](auto a_layout, auto b_layout, auto cd_layout, auto type) {
        using ALayout  = decltype(a_layout);
        using BLayout  = decltype(b_layout);
        using CDLayout = decltype(cd_layout);

        using DataType = decltype(type);

        if(default_strides)
        {
            assign_default_strides(a_layout, StridesA, {M[0], M[1], K[0], K[1]});
            assign_default_strides(b_layout, StridesB, {K[0], K[1], N[0], N[1]});
            assign_default_strides(cd_layout, StridesC, {M[0], M[1], N[0], N[1]});
            assign_default_strides(cd_layout, StridesD, {M[0], M[1], N[0], N[1]});
        }
        bool pass;
        if(with_bilinear)
        {
            pass = ck::profiler::profile_contraction_impl<ALayout,
                                                          BLayout,
                                                          CDLayout,
                                                          DataType,
                                                          ck::Tuple<DataType>,
                                                          Bilinear>(do_verification,
                                                                    init_method,
                                                                    do_log,
                                                                    time_kernel,
                                                                    Bilinear{alpha, beta},
                                                                    M,
                                                                    N,
                                                                    K,
                                                                    StridesA,
                                                                    StridesB,
                                                                    StridesC,
                                                                    StridesD);
        }
        else
        {
            pass = ck::profiler::
                profile_contraction_impl<ALayout, BLayout, CDLayout, DataType, ck::Tuple<>, Scale>(
                    do_verification,
                    init_method,
                    do_log,
                    time_kernel,
                    Scale{alpha},
                    M,
                    N,
                    K,
                    StridesA,
                    StridesB,
                    StridesC,
                    StridesD);
        }

        return pass;
    };

    if(data_type == ContractionDataType::F32_F32_F32_F32 &&
       layout == ContractionMatrixLayout::MK_KN_MN_MN)
    {
        return profile(Row{}, Row{}, Row{}, F32{});
    }
    else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
            layout == ContractionMatrixLayout::MK_NK_MN_MN)
    {
        return profile(Row{}, Col{}, Row{}, F32{});
    }
    else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
            layout == ContractionMatrixLayout::KM_KN_MN_MN)
    {
        return profile(Col{}, Row{}, Row{}, F32{});
    }
    else if(data_type == ContractionDataType::F32_F32_F32_F32 &&
            layout == ContractionMatrixLayout::KM_NK_MN_MN)
    {
        return profile(Col{}, Col{}, Row{}, F32{});
    }
    else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
            layout == ContractionMatrixLayout::MK_KN_MN_MN)
    {
        return profile(Row{}, Row{}, Row{}, F64{});
    }
    else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
            layout == ContractionMatrixLayout::MK_NK_MN_MN)
    {
        return profile(Row{}, Col{}, Row{}, F64{});
    }
    else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
            layout == ContractionMatrixLayout::KM_KN_MN_MN)
    {
        return profile(Col{}, Row{}, Row{}, F64{});
    }
    else if(data_type == ContractionDataType::F64_F64_F64_F64 &&
            layout == ContractionMatrixLayout::KM_NK_MN_MN)
    {
        return profile(Col{}, Col{}, Row{}, F64{});
    }
    else
    {
        std::cout << "this data_type & layout is not implemented" << std::endl;

        return 1;
    }
}

REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_contraction);