contraction_scale_xdl_fp32.cpp 20 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
11
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
12
13
14
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
15
16
17
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
18
#include "ck/library/utility/numeric.hpp"
19

20
21
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F32 = float;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType        = F32;
using BDataType        = F32;
using AccDataType      = F32;
using CShuffleDataType = F32;
using DsDataType       = ck::Tuple<>;
using EDataType        = F32;

static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;

using AElementOp   = ck::tensor_operation::element_wise::PassThrough;
using BElementOp   = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Scale;

static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;

// clang-format off
Po Yen Chen's avatar
Po Yen Chen committed
47
using DeviceOpInstanceKKN = ck::tensor_operation::device::
48
49
50
51
52
53
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   4,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,              S<1, 16, 1, 16>,               4>;

Po Yen Chen's avatar
Po Yen Chen committed
54
using DeviceOpInstanceKNN = ck::tensor_operation::device::
55
56
57
58
59
60
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   4,   1,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              4,              1,         0,           1,           1,              S<1, 16, 1, 16>,               4>;

Po Yen Chen's avatar
Po Yen Chen committed
61
using DeviceOpInstanceMKN = ck::tensor_operation::device::
62
63
64
65
66
67
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   1,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              4,              1,         0,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,              S<1, 16, 1, 16>,               4>;

Po Yen Chen's avatar
Po Yen Chen committed
68
using DeviceOpInstanceMNN = ck::tensor_operation::device::
69
70
71
72
73
74
75
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   1,   1,   32,   32,    4,    2,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              4,              1,         0,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              4,              1,         0,           1,           1,              S<1, 16, 1, 16>,               4>;
// clang-format on

Po Yen Chen's avatar
Po Yen Chen committed
76
using DeviceOpInstance = DeviceOpInstanceKKN;
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

int main(int argc, char* argv[])
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;

    // A[M0, M1, K0, K1]
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
    // B[N0, N1, K0, K1]
    std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
    std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
    // E[M0, M1, N0, N1]
    std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};

    float scale = 1.f;

    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else if(argc == 23)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);

        const ck::index_t M0 = std::stoi(argv[4]);
        const ck::index_t M1 = std::stoi(argv[5]);

        const ck::index_t N0 = std::stoi(argv[6]);
        const ck::index_t N1 = std::stoi(argv[7]);

        const ck::index_t K0 = std::stoi(argv[8]);
        const ck::index_t K1 = std::stoi(argv[9]);

        a_ms_ks_lengths = {M0, M1, K0, K1};
        a_ms_ks_strides = {
            std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};

        b_ns_ks_lengths = {N0, N1, K0, K1};
        b_ns_ks_strides = {
            std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};

        e_ms_ns_lengths = {M0, M1, N0, N1};
        e_ms_ns_strides = {
131
            std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
132

133
        scale = std::stof(argv[22]);
134
135
136
137
138
139
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=no, 1=yes)\n");
140
        printf("arg4 to 9: M0, M1, N0, N1, K0, K1\n");
141
142
143
144
145
146
147
        printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
        printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
        printf("arg18 to 21: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
        printf("arg22: scale\n");
        exit(0);
    }

148
149
150
151
    Tensor<ADataType> a_ms_ks(a_ms_ks_lengths, a_ms_ks_strides);
    Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
    Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
    Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
    std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
    std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    default:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    }

170
171
172
    DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
    DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    a_device_buf.ToDevice(a_ms_ks.mData.data());
    b_device_buf.ToDevice(b_ns_ks.mData.data());

    // set zero
    e_device_buf.SetZero();

    auto a_element_op   = AElementOp{};
    auto b_element_op   = BElementOp{};
    auto cde_element_op = CDEElementOp{scale};

    // device operation
    auto op       = DeviceOpInstance{};
    auto invoker  = op.MakeInvoker();
    auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
                                    b_device_buf.GetDeviceBuffer(),
                                    std::array<const void*, 0>{},
                                    e_device_buf.GetDeviceBuffer(),
                                    a_ms_ks_lengths,
                                    a_ms_ks_strides,
                                    b_ns_ks_lengths,
                                    b_ns_ks_strides,
                                    std::array<std::vector<ck::index_t>, 0>{},
                                    std::array<std::vector<ck::index_t>, 0>{},
                                    e_ms_ns_lengths,
                                    e_ms_ns_strides,
                                    a_element_op,
                                    b_element_op,
                                    cde_element_op);

    if(!op.IsSupportedArgument(argument))
    {
        std::cout << op.GetTypeString() << " does not support this problem" << std::endl;

        return 0;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

212
213
    ck::index_t M =
        ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
214

215
216
    ck::index_t N = ck::accumulate_n<ck::index_t>(
        e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
217

218
219
    ck::index_t K = ck::accumulate_n<ck::index_t>(
        a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + +sizeof(EDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << op.GetTypeString() << std::endl;

    e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());

    if(do_verification)
    {
236
237
238
239
240
241
242
243
244
245
246
        using ReferenceOpInstance =
            ck::tensor_operation::host::ReferenceContraction_M2_N2_K2<NumDimM,
                                                                      NumDimN,
                                                                      NumDimK,
                                                                      ADataType,
                                                                      BDataType,
                                                                      CShuffleDataType,
                                                                      AccDataType,
                                                                      AElementOp,
                                                                      BElementOp,
                                                                      CDEElementOp>;
247
248
249
250

        auto ref_gemm    = ReferenceOpInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

251
252
253
254
255
256
257
258
        Tensor<float> empty_tensor(std::vector<ck::index_t>{}, std::vector<ck::index_t>{});
        auto ref_argument = ref_gemm.MakeArgument(a_ms_ks,
                                                  b_ns_ks,
                                                  empty_tensor,
                                                  e_ms_ns_host_result,
                                                  a_element_op,
                                                  b_element_op,
                                                  cde_element_op);
259
260
261

        ref_invoker.Run(ref_argument);

262
        return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
263
264
265
266
    }

    return 0;
}