Commit 409cdfef authored by dongcl's avatar dongcl
Browse files

Merge branch 'megatron_v0.11.0' of...

Merge branch 'megatron_v0.11.0' of http://developer.sourcefind.cn/codes/OpenDAS/dcu_megatron into megatron_v0.11.0
parents 8ec8fb6b 1e498ef0
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
import torch
from torch import nn
class RMSNorm(torch.nn.Module):
def __init__(self,
dim: int,
eps: float = 1e-6,
sequence_parallel: bool = False,
config: dict = None):
"""RMS Normaliation module
Args:
dim (int): The width of input, i.e. hidden size
eps (float): epsilon to use for the norm, default to 1e-6
sequence_parallel (bool): Set to true if sequence parallelism is being used,
this marks the weights as needing to be allreduced.
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
setattr(self.weight, 'sequence_parallel', sequence_parallel)
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
@torch.compile(mode="max-autotune-no-cudagraphs")
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
import torch
from typing import Any, Callable, Dict, Optional, Tuple, Union
......
from megatron.training import get_args
from megatron.legacy.model import LayerNorm
from .rms_norm import LightopRMSNorm
from .rms_norm import RMSNorm, LightopRMSNorm
def get_norm(config):
......@@ -15,8 +15,12 @@ def get_norm(config):
elif args.normalization == "RMSNorm":
if args.apply_layernorm_1p:
raise NotImplementedError('RMSNorm does not currently support the layernorm_1p formulation.')
return RMSNorm(dim=config.hidden_size,
eps=config.layernorm_epsilon,
sequence_parallel=config.sequence_parallel)
elif args.normalization == "LightopRMSNorm":
return LightopRMSNorm(dim=config.hidden_size,
eps=config.layernorm_epsilon)
eps=config.layernorm_epsilon)
else:
raise Exception(f"unsupported norm type '{args.normalization}'.")
......@@ -51,6 +51,7 @@ def parse_args(extra_args_provider=None, ignore_unknown_args=False):
# Standard arguments.
parser = _add_network_size_args(parser)
parser = _add_extra_network_size_args(parser)
parser = _add_regularization_args(parser)
parser = _add_training_args(parser)
parser = _add_extra_training_args(parser)
......@@ -106,6 +107,18 @@ def parse_args(extra_args_provider=None, ignore_unknown_args=False):
return args
def _add_extra_network_size_args(parser):
# 删除原参数
remove_original_params(parser, ["normalization"])
# 重定义参数
group = parser.add_argument_group(title='extra network size args')
group.add_argument('--normalization', default='LayerNorm',
choices=['LayerNorm', 'RMSNorm', 'LightopRMSNorm'],
help='Which normalization technique to use.')
return parser
def _add_extra_distributed_args(parser):
group = parser.add_argument_group(title='extra distributed args')
group.add_argument('--rank', default=-1, type=int,
......
#!/bin/bash
# set -eux
#export FLASH_ATTENTION_PRINT_PARAM=1
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS
#export HIP_ALLOC_INITIALIZE=0
# export GPU_MAX_HW_QUEUES=10
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=32 # 20
export NCCL_MAX_NCHANNELS=32 # 20
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export NCCL_TOPO_FILE="/public/home/wangxj/Projects/rccl-test/rccl-tests-0204/topo-input.xml"
# export NCCL_TOPO_FILE="/workspace/rccl-test/rccl-tests-0204/topo-input.xml"
export GLOG_minloglevel=3 # 打印error级别的nccl日志
source /opt/dtk/env.sh
# 导入hipblaslt库
# export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/blas/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
# 更新rocblas
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1211/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1228/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install-0118-bf16/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install-0203-release/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/blas/rocblas-install-0331-release/lib:$LD_LIBRARY_PATH
# torch控制多流转单流
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export SENDRECV_STREAM_WITH_COMPUTE=1
# prof采集添加同步, 避免卡顿
# export GPU_FLUSH_ON_EXECUTION=1
# export HIP_DIRECT_DISPATCH=0
# 采集rocblas size
# export ROCBLAS_LAYER=3
# export HIPBLASLT_LOG_LEVEL=3
# 采集 fa size
# export FLASH_ATTENTION_PRINT_PARAM=1
#增加编译缓存
export cache_size_limit=64
# lightop算子库
export PYTORCH_ROCM_ARCH='gfx906;gfx926;gfx936'
# CHECKPOINT_PATH=./Llama-2-7b-hf-to-meg-tp1-pp2 #CHECKPOINT_PATH=./tmp_7b #
SAVE_PATH=./tmp_7b
TENSORBOARD_LOGS_PATH=./tmp_7b #$2 #<Specify path>
DATA_PATH="/public/home/gmhtest_tmp/RedPajama-Data-1T-Sample/redpajama_text_document" #<Specify path and file prefix>_text_document
# DATA_PATH="/data/datasets/oscar-1GB-head/oscar-1GB_head-llama3.2_text_document" #<Specify path and file prefix>_text_document
GPT_MODEL_ARGS=(
--num-layers 80 #80 #80 #40 # 20 #
--hidden-size 8192
--ffn-hidden-size 22016 # 28672
--num-attention-heads 64
--max-position-embeddings 8192
--group-query-attention
--num-query-groups 8
--normalization RMSNorm
--position-embedding-type rope
--untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
)
export NVTE_FLASH_ATTN=1 # 走cutlass
# export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
# --transformer-impl transformer_engine # 走core用这两组参数
# --use-mcore-models
# --transformer-impl local # 走legacy用这两组参数
# --use-legacy-models
TRAINING_ARGS=(
--transformer-impl local # 走legacy用这两组参数
--use-legacy-models
--micro-batch-size 1
--global-batch-size 512 #32 #512 #256 # 64 #240 #60 #512 #64
--train-iters 300
--weight-decay 0.1
--adam-beta1 0.9
--adam-beta2 0.95
--init-method-std 0.006
--clip-grad 1.0
--bf16
# --fp16 # 开启fp16需要指定loss-scale
# --loss-scale 1024
--use-distributed-optimizer
--disable-bias-linear
--attention-dropout 0
--hidden-dropout 0
# --no-gradient-accumulation-fusion
# --no-check-for-nan-in-loss-and-grad
--swiglu
--lr 3.0e-5
--lr-decay-style cosine
--min-lr 3.0e-6
--lr-warmup-iters 1
--ckpt-format torch
--ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
# --recompute-activations
# --recompute-granularity full # 开启重计算降低显存增加耗时
# --recompute-num-layers 1 #0 #
# --recompute-method block
--overlap-grad-reduce # 重叠ddp grad reduce
# --tp-comm-overlap # tensor parallel comm和gemm重叠, 启动core
# --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠, 启动core
--use-flash-attn
)
# export TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1
# export TORCHINDUCTOR_BENCHMARK_FUSION=1
# export TORCHINDUCTOR_BENCHMARK_MULTI_TEMPLATES=1
# export TORCHINDUCTOR_MAX_AUTOTUNE=1
# export TORCHINDUCTOR_CACHE_DIR=./cache
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
# --use-flash-attn-torch # torch fa
MODEL_PARALLEL_ARGS=(
--sequence-parallel
--tensor-model-parallel-size 4
--pipeline-model-parallel-size 8
--context-parallel-size 1
# --num-layers-per-virtual-pipeline-stage 1
# --microbatch-group-size-per-virtual-pipeline-stage 5
# --no-overlap-p2p-communication # 开启后
)
DATA_ARGS=(
--data-path $DATA_PATH
--seq-length 4096 #8192 #4096
--split 949,50,1
--tokenizer-type Llama2Tokenizer
--tokenizer-model /public/home/gmhtest_tmp/RedPajama-Data-1T-Sample/tokenizer.model
# --tokenizer-model /data/model_weights/llama3.2/tokenizer.model
)
EVAL_AND_LOGGING_ARGS=(
--log-interval 1
--log-throughput
--save-interval 500
--eval-interval 50
--eval-iters 3
--save $SAVE_PATH
--load $SAVE_PATH
--tensorboard-dir $TENSORBOARD_LOGS_PATH
)
# FINETUNE_ARGS=(
# # --finetune
# # --pretrained-checkpoint $CHECKPOINT_PATH
# --load $CHECKPOINT_PATH
# --no-load-optim
# --no-load-rng
# )
PROFILE_ARGS=(
--profile
--profile-step-start 4
--profile-step-end 5
--use-pytorch-profiler
--profile-ranks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
--profile-dir prof_data
)
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=34577
DISTRIBUTED_ARGS=(
--rank ${RANK}
--world-size ${WORLD_SIZE}
--local-rank ${LOCAL_RANK}
--dist-url tcp://${DIST_URL}:${DIST_PORT}
)
APP="python -u ../../pretrain_gpt.py \
${GPT_MODEL_ARGS[@]} \
${TRAINING_ARGS[@]} \
${MODEL_PARALLEL_ARGS[@]} \
${DATA_ARGS[@]} \
${EVAL_AND_LOGGING_ARGS[@]} \
${DISTRIBUTED_ARGS[@]} \
"
# 开启profile
# ${PROFILE_ARGS[@]} \
# export HIP_VISIBLE_DEVICES=0,7 # # 4,5,6,7 #,
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # # 4,5,6,7 #,
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
# ${APP}
case ${LOCAL_RANK} in
[0])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=0 --membind=0 ${APP}
;;
[1])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=1 --membind=1 ${APP}
;;
[2])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=2 --membind=2 ${APP}
;;
[3])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=3 --membind=3 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[4])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=4 --membind=4 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[5])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=5 --membind=5 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[6])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=6 --membind=6 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[7])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=7 --membind=7 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
esac
\ No newline at end of file
#!/bin/bash
# set -eux
for para in $*
do
if [[ $para == --profiling* ]];then
profiling=${para#*=}
fi
done
CURRENT_DIR="$( cd "$( dirname "$0" )" && pwd )"
MEGATRON_PATH=$( dirname $( dirname ${CURRENT_DIR}))
#default env
#export FLASH_ATTENTION_PRINT_PARAM=1
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS
# export GPU_MAX_HW_QUEUES=10
#export HIP_ALLOC_INITIALIZE=0
export CUDA_DEVICE_MAX_CONNECTIONS=1
# nccl env
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=32 # 20
export NCCL_MAX_NCHANNELS=32 # 20
export NCCL_IB_TIMEOUT=22
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
export NCCL_TOPO_FILE="/workspace/rccl-test/rccl-tests-0204/topo-input.xml"
export GLOG_minloglevel=3 # 打印error级别的nccl日志
source /opt/dtk/env.sh
# hipblaslt库
export LD_LIBRARY_PATH=/data/blas/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
# rocblas
export LD_LIBRARY_PATH=/data/blas/rocblas-install-0331-release/lib:$LD_LIBRARY_PATH
# torch控制多流转单流
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export SENDRECV_STREAM_WITH_COMPUTE=1
#增加编译缓存
export cache_size_limit=64
# CHECKPOINT_PATH=./Llama-2-7b-hf-to-meg-tp1-pp2 #CHECKPOINT_PATH=./tmp_7b #
SAVE_PATH=./tmp_7b
TENSORBOARD_LOGS_PATH=./tmp_7b #$2 #<Specify path>
DATA_PATH="/data/datasets/oscar-1GB/oscar-1GB-llama2_text_document" #<Specify path and file prefix>_text_document
GPT_MODEL_ARGS=(
--num-layers 32
--hidden-size 4096
--ffn-hidden-size 11008
--num-attention-heads 32
--max-position-embeddings 4096
--normalization RMSNorm # LightopRMSNorm
--position-embedding-type rope # none #
--untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
)
export NVTE_FLASH_ATTN=1 # 走cutlass
# export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
# --transformer-impl transformer_engine # 走core用这两组参数
# --use-mcore-models
# --transformer-impl local # 走legacy用这两组参数
# --use-legacy-models
TRAINING_ARGS=(
--transformer-impl local # 走legacy用这两组参数
--use-legacy-models
--micro-batch-size 1
--global-batch-size 256 #256 #240 #60 #512 #64
--train-iters 50
--weight-decay 0.1
--adam-beta1 0.9
--adam-beta2 0.95
--init-method-std 0.006
--clip-grad 1.0
--bf16
# --fp16 # 开启fp16需要指定loss-scale
# --loss-scale 1024
--use-distributed-optimizer
--disable-bias-linear
--attention-dropout 0
--hidden-dropout 0
# --no-gradient-accumulation-fusion
--swiglu
--lr 3.0e-5
--lr-decay-style cosine
--min-lr 3.0e-6
--lr-warmup-iters 1
--ckpt-format torch
--ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
# --recompute-granularity full # 开启重计算降低显存增加耗时
# --recompute-num-layers 5 #0 #
# --recompute-method block
--overlap-grad-reduce # 重叠ddp grad reduce
# --tp-comm-overlap # tensor parallel comm和gemm重叠, 优化项未适配
# --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠
--use-flash-attn
)
# 使用torch fa的环境变量
# export TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1
# export TORCHINDUCTOR_BENCHMARK_FUSION=1
# export TORCHINDUCTOR_BENCHMARK_MULTI_TEMPLATES=1
# export TORCHINDUCTOR_MAX_AUTOTUNE=1
# export TORCHINDUCTOR_CACHE_DIR=./cache
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
# --use-flash-attn-torch # torch fa
MODEL_PARALLEL_ARGS=(
--sequence-parallel
--tensor-model-parallel-size 1
--pipeline-model-parallel-size 2
# --context-parallel-size 2
# --num-layers-per-virtual-pipeline-stage 4
# --microbatch-group-size-per-virtual-pipeline-stage 1
# --no-overlap-p2p-communication # 开启后
)
DATA_ARGS=(
--data-path $DATA_PATH
--seq-length 4096 #4096
--split 949,50,1
--tokenizer-type Llama2Tokenizer
--tokenizer-model /data/model_weights/llama2_7b_hf/tokenizer.model
)
EVAL_AND_LOGGING_ARGS=(
--log-throughput
--eval-iters 50
--log-interval 1
--save-interval 1000
--eval-interval 1000
--save $SAVE_PATH
--load $SAVE_PATH
--tensorboard-dir $TENSORBOARD_LOGS_PATH
)
# FINETUNE_ARGS=(
# # --finetune
# # --pretrained-checkpoint $CHECKPOINT_PATH
# --load $CHECKPOINT_PATH
# --no-load-optim
# --no-load-rng
# )
PROFILE_ARGS=(
--profile
--profile-step-start 4
--profile-step-end 5
--use-pytorch-profiler
--profile-ranks 0 1 2 3 4 5 6 7
--profile-dir prof_data
)
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=34577
DISTRIBUTED_ARGS=(
--rank ${RANK}
--world-size ${WORLD_SIZE}
--local-rank ${LOCAL_RANK}
--dist-url tcp://${DIST_URL}:${DIST_PORT}
)
APP="python -u ${MEGATRON_PATH}/pretrain_gpt.py \
${GPT_MODEL_ARGS[@]} \
${TRAINING_ARGS[@]} \
${MODEL_PARALLEL_ARGS[@]} \
${DATA_ARGS[@]} \
${EVAL_AND_LOGGING_ARGS[@]} \
${DISTRIBUTED_ARGS[@]} \
"
# 开启profile
# ${PROFILE_ARGS[@]} \
# export HIP_VISIBLE_DEVICES=0,7 # # 4,5,6,7 #,
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # # 4,5,6,7 #,
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
# ${APP}
case ${LOCAL_RANK} in
[0])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=0 --membind=0 ${APP}
;;
[1])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=1 --membind=1 ${APP}
;;
[2])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=2 --membind=2 ${APP}
;;
[3])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=3 --membind=3 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[4])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=4 --membind=4 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[5])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=5 --membind=5 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[6])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=6 --membind=6 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[7])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=7 --membind=7 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
esac
\ No newline at end of file
#!/bin/bash
# set -eux
#export FLASH_ATTENTION_PRINT_PARAM=1
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS
#export HIP_ALLOC_INITIALIZE=0
# export GPU_MAX_HW_QUEUES=10
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=32 # 20
export NCCL_MAX_NCHANNELS=32 # 20
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export NCCL_TOPO_FILE="/public/home/wangxj/Projects/rccl-test/rccl-tests-0204/topo-input.xml"
# export NCCL_TOPO_FILE="/workspace/rccl-test/rccl-tests-0204/topo-input.xml"
export GLOG_minloglevel=3 # 打印error级别的nccl日志
source /opt/dtk/env.sh
# 导入hipblaslt库
# export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/blas/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
# 更新rocblas
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1211/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1228/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install-0118-bf16/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install-0203-release/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/blas/rocblas-install-0203-release/lib:$LD_LIBRARY_PATH
# torch控制多流转单流
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export SENDRECV_STREAM_WITH_COMPUTE=1
# prof采集添加同步, 避免卡顿
# export GPU_FLUSH_ON_EXECUTION=1
# export HIP_DIRECT_DISPATCH=0
# 采集rocblas size
# export ROCBLAS_LAYER=3
# 采集 fa size
# export FLASH_ATTENTION_PRINT_PARAM=1
#增加编译缓存
export cache_size_limit=64
# CHECKPOINT_PATH=./Llama-2-7b-hf-to-meg-tp1-pp2 #CHECKPOINT_PATH=./tmp_7b #
SAVE_PATH=./tmp_7b
TENSORBOARD_LOGS_PATH=./tmp_7b #$2 #<Specify path>
DATA_PATH="/public/home/wangxj/Downloads/datasets/oscar-1GB-head/oscar-1GB_head-llama3.2_text_document" #<Specify path and file prefix>_text_document
# DATA_PATH="/data/datasets/oscar-1GB-head/oscar-1GB_head-llama3.2_text_document" #<Specify path and file prefix>_text_document
GPT_MODEL_ARGS=(
--num-layers 126 #96 #8 # 126
--hidden-size 16384
--ffn-hidden-size 53248
--num-attention-heads 128
--max-position-embeddings 16384
--group-query-attention
--num-query-groups 16
--normalization RMSNorm
--position-embedding-type rope
--untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
)
export NVTE_FLASH_ATTN=1 # 走cutlass
# export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
# --transformer-impl transformer_engine # 走core用这两组参数
# --use-mcore-models
# --transformer-impl local # 走legacy用这两组参数
# --use-legacy-models
TRAINING_ARGS=(
--transformer-impl transformer_engine # 走core用这两组参数
--use-mcore-models
--micro-batch-size 1
--global-batch-size 6912 # 252 #32 # 64 #240 #60 #512 #64
--train-iters 100
--weight-decay 0.1
--adam-beta1 0.9
--adam-beta2 0.95
--init-method-std 0.006
--clip-grad 1.0
--bf16
# --fp16 # 开启fp16需要指定loss-scale
# --loss-scale 1024
--use-distributed-optimizer
--disable-bias-linear
--attention-dropout 0
--hidden-dropout 0
# --no-gradient-accumulation-fusion
--swiglu
--lr 3.0e-5
--lr-decay-style cosine
--min-lr 3.0e-6
--lr-warmup-iters 1
--ckpt-format torch
--ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
# --recompute-granularity full # 开启重计算降低显存增加耗时
# --recompute-num-layers 5 #0 #
# --recompute-method block
--overlap-grad-reduce # 重叠ddp grad reduce
# --tp-comm-overlap # tensor parallel comm和gemm重叠, 优化项未适配
# --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠, 优化项未适配
--use-flash-attn-cutlass
)
# export TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1
# export TORCHINDUCTOR_BENCHMARK_FUSION=1
# export TORCHINDUCTOR_BENCHMARK_MULTI_TEMPLATES=1
# export TORCHINDUCTOR_MAX_AUTOTUNE=1
# export TORCHINDUCTOR_CACHE_DIR=./cache
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
# --use-flash-attn-torch # torch fa
MODEL_PARALLEL_ARGS=(
--sequence-parallel
--tensor-model-parallel-size 8
--pipeline-model-parallel-size 18 # 7 layer/gpu
--context-parallel-size 2
)
DATA_ARGS=(
--data-path $DATA_PATH
--seq-length 4096 #4096
--split 949,50,1
--tokenizer-type Llama3Tokenizer
--tokenizer-model /public/home/wangxj/Downloads/model_weights/llama3.2/tokenizer.model
# --tokenizer-model /data/model_weights/llama3.2/tokenizer.model
)
EVAL_AND_LOGGING_ARGS=(
--log-interval 1
--log-throughput
--save-interval 1000
--eval-interval 1000
--save $SAVE_PATH
--load $SAVE_PATH
--eval-iters 10
--tensorboard-dir $TENSORBOARD_LOGS_PATH
)
# FINETUNE_ARGS=(
# # --finetune
# # --pretrained-checkpoint $CHECKPOINT_PATH
# --load $CHECKPOINT_PATH
# --no-load-optim
# --no-load-rng
# )
PROFILE_ARGS=(
--profile
--profile-step-start 4
--profile-step-end 5
--use-pytorch-profiler
--profile-ranks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
--profile-dir prof_data
)
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=34577
DISTRIBUTED_ARGS=(
--rank ${RANK}
--world-size ${WORLD_SIZE}
--local-rank ${LOCAL_RANK}
--dist-url tcp://${DIST_URL}:${DIST_PORT}
)
APP="python -u pretrain_gpt.py \
${GPT_MODEL_ARGS[@]} \
${TRAINING_ARGS[@]} \
${MODEL_PARALLEL_ARGS[@]} \
${DATA_ARGS[@]} \
${EVAL_AND_LOGGING_ARGS[@]} \
${DISTRIBUTED_ARGS[@]} \
"
# 开启profile
# ${PROFILE_ARGS[@]} \
# export HIP_VISIBLE_DEVICES=0,7 # # 4,5,6,7 #,
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # # 4,5,6,7 #,
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
${APP}
# case ${LOCAL_RANK} in
# [0])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [1])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# numactl --cpunodebind=1 --membind=1 ${APP}
# ;;
# [2])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# numactl --cpunodebind=2 --membind=2 ${APP}
# ;;
# [3])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=3 --membind=3 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [4])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=4 --membind=4 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [5])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=5 --membind=5 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [6])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=6 --membind=6 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [7])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=7 --membind=7 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# esac
\ No newline at end of file
#!/bin/bash
# set -eux
#export FLASH_ATTENTION_PRINT_PARAM=1
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS
#export HIP_ALLOC_INITIALIZE=0
# export GPU_MAX_HW_QUEUES=10
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=32 # 20
export NCCL_MAX_NCHANNELS=32 # 20
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export NCCL_TOPO_FILE="/public/home/wangxj/Projects/rccl-test/rccl-tests-0204/topo-input.xml"
# export NCCL_TOPO_FILE="/workspace/rccl-test/rccl-tests-0204/topo-input.xml"
export GLOG_minloglevel=3 # 打印error级别的nccl日志
source /opt/dtk/env.sh
# 导入hipblaslt库
# export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
# 更新rocblas
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1211/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1228/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install-0118-bf16/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install-0203-release/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/rocblas-install-0203-release/lib:$LD_LIBRARY_PATH
# torch控制多流转单流
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export SENDRECV_STREAM_WITH_COMPUTE=1
# prof采集添加同步, 避免卡顿
# export GPU_FLUSH_ON_EXECUTION=1
# export HIP_DIRECT_DISPATCH=0
# 采集rocblas size
# export ROCBLAS_LAYER=3
# export HIPBLASLT_LOG_LEVEL=3
# 采集 fa size
# export FLASH_ATTENTION_PRINT_PARAM=1
#增加编译缓存
export cache_size_limit=64
# CHECKPOINT_PATH=./Llama-2-7b-hf-to-meg-tp1-pp2 #CHECKPOINT_PATH=./tmp_7b #
SAVE_PATH=./tmp_7b
TENSORBOARD_LOGS_PATH=./tmp_7b #$2 #<Specify path>
DATA_PATH="/public/home/wangxj/Downloads/datasets/oscar-1GB-head/oscar-1GB_head-llama3.2_text_document" #<Specify path and file prefix>_text_document
# DATA_PATH="/data/datasets/oscar-1GB-head/oscar-1GB_head-llama3.2_text_document" #<Specify path and file prefix>_text_document
GPT_MODEL_ARGS=(
--num-layers 80 #80 #80 #40 # 20 #
--hidden-size 8192
--ffn-hidden-size 28672
--num-attention-heads 64
--max-position-embeddings 8192
--group-query-attention
--num-query-groups 8
--normalization RMSNorm
--position-embedding-type rope
--untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
)
export NVTE_FLASH_ATTN=1 # 走cutlass
# export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
# --transformer-impl transformer_engine # 走core用这两组参数
# --use-mcore-models
# --transformer-impl local # 走legacy用这两组参数
# --use-legacy-models
TRAINING_ARGS=(
--transformer-impl local # 走legacy用这两组参数
--use-legacy-models
--micro-batch-size 1
--global-batch-size 960 #32 #512 #256 # 64 #240 #60 #512 #64
--train-iters 100
--weight-decay 0.1
--adam-beta1 0.9
--adam-beta2 0.95
--init-method-std 0.006
--clip-grad 1.0
--bf16
# --fp16 # 开启fp16需要指定loss-scale
# --loss-scale 1024
--use-distributed-optimizer
--disable-bias-linear
--attention-dropout 0
--hidden-dropout 0
# --no-gradient-accumulation-fusion
--swiglu
--lr 3.0e-5
--lr-decay-style cosine
--min-lr 3.0e-6
--lr-warmup-iters 1
--ckpt-format torch
--ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
# --recompute-activations
# --recompute-granularity full # 开启重计算降低显存增加耗时
# --recompute-num-layers 1 #0 #
# --recompute-method block
--overlap-grad-reduce # 重叠ddp grad reduce
# --tp-comm-overlap # tensor parallel comm和gemm重叠, 启动core
# --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠, 启动core
--use-flash-attn-cutlass
)
# export TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1
# export TORCHINDUCTOR_BENCHMARK_FUSION=1
# export TORCHINDUCTOR_BENCHMARK_MULTI_TEMPLATES=1
# export TORCHINDUCTOR_MAX_AUTOTUNE=1
# export TORCHINDUCTOR_CACHE_DIR=./cache
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
# --use-flash-attn-torch # torch fa
MODEL_PARALLEL_ARGS=(
--sequence-parallel
--tensor-model-parallel-size 4
--pipeline-model-parallel-size 8
# --context-parallel-size 2
# --num-layers-per-virtual-pipeline-stage 5
# --microbatch-group-size-per-virtual-pipeline-stage 1
# --no-overlap-p2p-communication # 开启后
)
DATA_ARGS=(
--data-path $DATA_PATH
--seq-length 4096 #8192 #4096
--split 949,50,1
--tokenizer-type Llama3Tokenizer
--tokenizer-model /public/home/wangxj/Downloads/model_weights/llama3.2/tokenizer.model
# --tokenizer-model /data/model_weights/llama3.2/tokenizer.model
)
EVAL_AND_LOGGING_ARGS=(
--log-interval 1
--log-throughput
--save-interval 1000
--eval-interval 1000
--save $SAVE_PATH
--load $SAVE_PATH
--eval-iters 10
--tensorboard-dir $TENSORBOARD_LOGS_PATH
)
# FINETUNE_ARGS=(
# # --finetune
# # --pretrained-checkpoint $CHECKPOINT_PATH
# --load $CHECKPOINT_PATH
# --no-load-optim
# --no-load-rng
# )
PROFILE_ARGS=(
--profile
--profile-step-start 4
--profile-step-end 5
--use-pytorch-profiler
--profile-ranks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
--profile-dir prof_data
)
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=34577
DISTRIBUTED_ARGS=(
--rank ${RANK}
--world-size ${WORLD_SIZE}
--local-rank ${LOCAL_RANK}
--dist-url tcp://${DIST_URL}:${DIST_PORT}
)
APP="python -u pretrain_gpt.py \
${GPT_MODEL_ARGS[@]} \
${TRAINING_ARGS[@]} \
${MODEL_PARALLEL_ARGS[@]} \
${DATA_ARGS[@]} \
${EVAL_AND_LOGGING_ARGS[@]} \
${DISTRIBUTED_ARGS[@]} \
"
# 开启profile
# ${PROFILE_ARGS[@]} \
# export HIP_VISIBLE_DEVICES=0,7 # # 4,5,6,7 #,
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # # 4,5,6,7 #,
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
# ${APP}
case ${LOCAL_RANK} in
[0])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=0 --membind=0 ${APP}
;;
[1])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=1 --membind=1 ${APP}
;;
[2])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=2 --membind=2 ${APP}
;;
[3])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=3 --membind=3 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[4])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=4 --membind=4 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[5])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=5 --membind=5 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[6])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=6 --membind=6 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[7])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=7 --membind=7 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
esac
\ No newline at end of file
#!/bin/bash
# set -eux
#export FLASH_ATTENTION_PRINT_PARAM=1
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS
#export HIP_ALLOC_INITIALIZE=0
# export GPU_MAX_HW_QUEUES=10
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=32 # 20
export NCCL_MAX_NCHANNELS=32 # 20
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export NCCL_TOPO_FILE="/public/home/wangxj/Projects/rccl-test/rccl-tests-0204/topo-input.xml"
# export NCCL_TOPO_FILE="/workspace/rccl-test/rccl-tests-0204/topo-input.xml"
export GLOG_minloglevel=3 # 打印error级别的nccl日志
source /opt/dtk/env.sh
# 导入hipblaslt库
# export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH
# 更新rocblas
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1211/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1228/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install-0118-bf16/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/data/rocblas-install-0203-release/lib:$LD_LIBRARY_PATH
# torch控制多流转单流
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export SENDRECV_STREAM_WITH_COMPUTE=1
# prof采集添加同步, 避免卡顿
# export GPU_FLUSH_ON_EXECUTION=1
# export HIP_DIRECT_DISPATCH=0
# 采集rocblas size
# export ROCBLAS_LAYER=3
# 采集 fa size
# export FLASH_ATTENTION_PRINT_PARAM=1
#增加编译缓存
export cache_size_limit=64
# CHECKPOINT_PATH=./Llama-2-7b-hf-to-meg-tp1-pp2 #CHECKPOINT_PATH=./tmp_7b #
SAVE_PATH=./tmp_7b
TENSORBOARD_LOGS_PATH=./tmp_7b #$2 #<Specify path>
DATA_PATH="/public/home/wangxj/Downloads/datasets/oscar-1GB-head/oscar-1GB_head-llama3.2_text_document" #<Specify path and file prefix>_text_document
GPT_MODEL_ARGS=(
--num-layers 32
--hidden-size 4096
--ffn-hidden-size 14336
--num-attention-heads 32
--max-position-embeddings 8192
--group-query-attention
--num-query-groups 8
--swiglu
--normalization RMSNorm
--position-embedding-type rope
--untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
)
export NVTE_FLASH_ATTN=1 # 走cutlass
# export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
# --transformer-impl transformer_engine # 走core用这两组参数
# --use-mcore-models
# --transformer-impl local # 走legacy用这两组参数
# --use-legacy-models
TRAINING_ARGS=(
--transformer-impl local # 走legacy用这两组参数
--use-legacy-models
--micro-batch-size 1
--global-batch-size 64 #240 #60 #512 #64
--train-iters 10
--weight-decay 0.1
--adam-beta1 0.9
--adam-beta2 0.95
--init-method-std 0.006
--clip-grad 1.0
--bf16
# --fp16 # 开启fp16需要指定loss-scale
# --loss-scale 1024
--use-distributed-optimizer
--disable-bias-linear
--attention-dropout 0
--hidden-dropout 0
# --no-gradient-accumulation-fusion
--lr 3.0e-5
--lr-decay-style cosine
--min-lr 3.0e-6
--lr-warmup-iters 1
--ckpt-format torch
--ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
# --recompute-granularity full # 开启重计算降低显存增加耗时
# --recompute-num-layers 5 #0 #
# --recompute-method block
--overlap-grad-reduce # 重叠ddp grad reduce
# --tp-comm-overlap # tensor parallel comm和gemm重叠, 优化项未适配
# --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠, 优化项未适配
--use-flash-attn
)
# export TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1
# export TORCHINDUCTOR_BENCHMARK_FUSION=1
# export TORCHINDUCTOR_BENCHMARK_MULTI_TEMPLATES=1
# export TORCHINDUCTOR_MAX_AUTOTUNE=1
# export TORCHINDUCTOR_CACHE_DIR=./cache
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
# --use-flash-attn-torch # torch fa
MODEL_PARALLEL_ARGS=(
--sequence-parallel
--tensor-model-parallel-size 2
--pipeline-model-parallel-size 2
)
DATA_ARGS=(
--data-path $DATA_PATH
--seq-length 4096 #4096
--split 949,50,1
--tokenizer-type Llama3Tokenizer
--tokenizer-model /public/home/wangxj/Downloads/model_weights/llama3.2/tokenizer.model
)
EVAL_AND_LOGGING_ARGS=(
--log-interval 1
--log-throughput
--save-interval 1000
--eval-interval 1000
--save $SAVE_PATH
--load $SAVE_PATH
--eval-iters 10
--tensorboard-dir $TENSORBOARD_LOGS_PATH
)
# FINETUNE_ARGS=(
# # --finetune
# # --pretrained-checkpoint $CHECKPOINT_PATH
# --load $CHECKPOINT_PATH
# --no-load-optim
# --no-load-rng
# )
PROFILE_ARGS=(
--profile
--profile-step-start 4
--profile-step-end 5
--use-pytorch-profiler
--profile-ranks 0 1 2 3 4 5 6 7
--profile-dir prof_data
)
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=34577
DISTRIBUTED_ARGS=(
--rank ${RANK}
--world-size ${WORLD_SIZE}
--local-rank ${LOCAL_RANK}
--dist-url tcp://${DIST_URL}:${DIST_PORT}
)
APP="python -u ../../pretrain_gpt.py \
${GPT_MODEL_ARGS[@]} \
${TRAINING_ARGS[@]} \
${MODEL_PARALLEL_ARGS[@]} \
${DATA_ARGS[@]} \
${EVAL_AND_LOGGING_ARGS[@]} \
${DISTRIBUTED_ARGS[@]} \
"
# 开启profile
# ${PROFILE_ARGS[@]} \
# export HIP_VISIBLE_DEVICES=0,7 # # 4,5,6,7 #,
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # # 4,5,6,7 #,
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
${APP}
# case ${LOCAL_RANK} in
# [0])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [1])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# numactl --cpunodebind=1 --membind=1 ${APP}
# ;;
# [2])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# numactl --cpunodebind=2 --membind=2 ${APP}
# ;;
# [3])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=3 --membind=3 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [4])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=4 --membind=4 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [5])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=5 --membind=5 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [6])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=6 --membind=6 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# [7])
# export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# numactl --cpunodebind=7 --membind=7 ${APP}
# # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
# ;;
# esac
\ No newline at end of file
#!/bin/bash
set -eux
#export FLASH_ATTENTION_PRINT_PARAM=1
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS
#export HIP_ALLOC_INITIALIZE=0
# export GPU_MAX_HW_QUEUES=10
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=32 # 20
export NCCL_MAX_NCHANNELS=32 # 20
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export NCCL_TOPO_FILE="/public/home/wangxj/Projects/rccl-test/rccl-tests-0204/topo-input.xml"
# export NCCL_TOPO_FILE="/workspace/rccl-test/rccl-tests-0204/topo-input.xml"
export GLOG_minloglevel=3 # 打印error级别的nccl日志
source /opt/dtk/env.sh
# 导入hipblaslt库
# export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
# 更新rocblas
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1211/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1228/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/rocblas-install-0224/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/rocblas-install-0331-release/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install-0118-bf16/lib:$LD_LIBRARY_PATH
# torch控制多流转单流
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export SENDRECV_STREAM_WITH_COMPUTE=1
# prof采集添加同步, 避免卡顿
# export GPU_FLUSH_ON_EXECUTION=1
# export HIP_DIRECT_DISPATCH=0
# 采集rocblas size
# export ROCBLAS_LAYER=3
# 采集 fa size
# export FLASH_ATTENTION_PRINT_PARAM=1
#增加编译缓存
export cache_size_limit=64
# CHECKPOINT_PATH=./Llama-2-7b-hf-to-meg-tp1-pp2 #CHECKPOINT_PATH=./tmp_7b #
SAVE_PATH=./tmp_7b
TENSORBOARD_LOGS_PATH=./tmp_7b #$2 #<Specify path>
DATA_PATH="/public/home/wangxj/Downloads/datasets/oscar-1GB-head/oscar-1GB_head-qwen_text_document" #<Specify path and file prefix>_text_document
# DATA_PATH="/data/datasets/oscar-1GB-head/oscar-1GB_head-llama2_text_document" #<Specify path and file prefix>_text_document
GPT_MODEL_ARGS=(
--num-layers 40
--hidden-size 5120
--ffn-hidden-size 13696
--num-attention-heads 40
--max-position-embeddings 32768
--num-query-groups 40
--group-query-attention
--normalization RMSNorm
--position-embedding-type rope # none #
--untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
)
export NVTE_FLASH_ATTN=1 # 走cutlass
# export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
# --transformer-impl transformer_engine # 走core用这两组参数
# --use-mcore-models
# --transformer-impl local # 走legacy用这两组参数
# --use-legacy-models
TRAINING_ARGS=(
--transformer-impl local # 走legacy用这两组参数
--use-legacy-models
--micro-batch-size 1
--global-batch-size 32 #256 #240 #60 #512 #64
--train-iters 50
--weight-decay 0.1
--adam-beta1 0.9
--adam-beta2 0.95
--init-method-std 0.006
--clip-grad 1.0
--bf16
# --fp16 # 开启fp16需要指定loss-scale
# --loss-scale 1024
--use-distributed-optimizer
--disable-bias-linear
--attention-dropout 0
--hidden-dropout 0
# --no-gradient-accumulation-fusion
--swiglu
--add-qkv-bias
--lr 3.0e-5
--lr-decay-style cosine
--min-lr 3.0e-6
--lr-warmup-iters 1
--ckpt-format torch
--ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
# --recompute-granularity full # 开启重计算降低显存增加耗时
# --recompute-num-layers 5 #0 #
# --recompute-method block
--overlap-grad-reduce # 重叠ddp grad reduce
# --tp-comm-overlap # tensor parallel comm和gemm重叠, 优化项未适配
# --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠
--use-flash-attn
)
# 使用torch fa的环境变量
# export TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1
# export TORCHINDUCTOR_BENCHMARK_FUSION=1
# export TORCHINDUCTOR_BENCHMARK_MULTI_TEMPLATES=1
# export TORCHINDUCTOR_MAX_AUTOTUNE=1
# export TORCHINDUCTOR_CACHE_DIR=./cache
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
# --use-flash-attn-torch # torch fa
MODEL_PARALLEL_ARGS=(
--sequence-parallel
--tensor-model-parallel-size 4
--pipeline-model-parallel-size 1
# --num-layers-per-virtual-pipeline-stage 4
# --microbatch-group-size-per-virtual-pipeline-stage 1
# --no-overlap-p2p-communication # 开启后
)
DATA_ARGS=(
--data-path $DATA_PATH
--seq-length 4096 #4096
--split 949,50,1
--tokenizer-type QwenTokenizer
--merge-file /public/home/wangxj/Downloads/model_weights/qwen1.5_14b/merges.txt
--vocab-file /public/home/wangxj/Downloads/model_weights/qwen1.5_14b/vocab.json
# --tokenizer-model /public/home/wangxj/Downloads/model_weights/llama2_7b_hf/tokenizer.model
# --tokenizer-model /data/model_weights/llama2_7b_hf/tokenizer.model
)
EVAL_AND_LOGGING_ARGS=(
--log-interval 1
--log-throughput
--save-interval 1000
--eval-interval 1000
--save $SAVE_PATH
--load $SAVE_PATH
--eval-iters 10
--tensorboard-dir $TENSORBOARD_LOGS_PATH
)
# FINETUNE_ARGS=(
# # --finetune
# # --pretrained-checkpoint $CHECKPOINT_PATH
# --load $CHECKPOINT_PATH
# --no-load-optim
# --no-load-rng
# )
PROFILE_ARGS=(
--profile
--profile-step-start 4
--profile-step-end 5
--use-pytorch-profiler
--profile-ranks 0 1 2 3 4 5 6 7
--profile-dir prof_data
)
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=34577
DISTRIBUTED_ARGS=(
--rank ${RANK}
--world-size ${WORLD_SIZE}
--local-rank ${LOCAL_RANK}
--dist-url tcp://${DIST_URL}:${DIST_PORT}
)
# torchrun --nproc_per_node 8 pretrain_gpt.py \
# ${GPT_MODEL_ARGS[@]} \
# ${TRAINING_ARGS[@]} \
# ${MODEL_PARALLEL_ARGS[@]} \
# ${DATA_ARGS[@]} \
# ${EVAL_AND_LOGGING_ARGS[@]}
APP="python -u ../../pretrain_gpt.py \
${GPT_MODEL_ARGS[@]} \
${TRAINING_ARGS[@]} \
${MODEL_PARALLEL_ARGS[@]} \
${DATA_ARGS[@]} \
${EVAL_AND_LOGGING_ARGS[@]} \
${DISTRIBUTED_ARGS[@]} \
"
# 开启profile
# ${PROFILE_ARGS[@]} \
# export HIP_VISIBLE_DEVICES=0,7 # # 4,5,6,7 #,
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # # 4,5,6,7 #,
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
# ${APP}
case ${LOCAL_RANK} in
[0])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=0 --membind=0 ${APP}
;;
[1])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=1 --membind=1 ${APP}
;;
[2])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=2 --membind=2 ${APP}
;;
[3])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=3 --membind=3 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[4])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=4 --membind=4 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[5])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=5 --membind=5 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[6])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=6 --membind=6 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[7])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=7 --membind=7 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
esac
#!/bin/bash
# set -eux
#export FLASH_ATTENTION_PRINT_PARAM=1
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS
#export HIP_ALLOC_INITIALIZE=0
# export GPU_MAX_HW_QUEUES=10
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=32 # 20
export NCCL_MAX_NCHANNELS=32 # 20
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export NCCL_TOPO_FILE="/public/home/wangxj/Projects/rccl-test/rccl-tests-0204/topo-input.xml"
# export NCCL_TOPO_FILE="/workspace/rccl-test/rccl-tests-0204/topo-input.xml"
export GLOG_minloglevel=3 # 打印error级别的nccl日志
source /opt/dtk/env.sh
# 导入hipblaslt库
# export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/hipblaslt-install-dtk-25.04-0212/lib:$LD_LIBRARY_PATH
# 更新rocblas
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1211/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install_qwen1228/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/rocblas-install-0224/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/public/home/wangxj/Downloads/rocblas-install-0331-release/lib:$LD_LIBRARY_PATH
# export LD_LIBRARY_PATH=/data/rocblas-install-0118-bf16/lib:$LD_LIBRARY_PATH
# torch控制多流转单流
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export SENDRECV_STREAM_WITH_COMPUTE=1
# prof采集添加同步, 避免卡顿
# export GPU_FLUSH_ON_EXECUTION=1
# export HIP_DIRECT_DISPATCH=0
# 采集rocblas size
# export ROCBLAS_LAYER=3
# 采集 fa size
# export FLASH_ATTENTION_PRINT_PARAM=1
#增加编译缓存
export cache_size_limit=64
# CHECKPOINT_PATH=./Llama-2-7b-hf-to-meg-tp1-pp2 #CHECKPOINT_PATH=./tmp_7b #
SAVE_PATH=./tmp_7b
TENSORBOARD_LOGS_PATH=./tmp_7b #$2 #<Specify path>
DATA_PATH="/public/home/wangxj/Downloads/datasets/oscar-1GB-head/oscar-1GB_head-qwen_text_document" #<Specify path and file prefix>_text_document
# DATA_PATH="/data/datasets/oscar-1GB-head/oscar-1GB_head-llama2_text_document" #<Specify path and file prefix>_text_document
GPT_MODEL_ARGS=(
--num-layers 64
--hidden-size 5120
--ffn-hidden-size 27392
--num-attention-heads 40
--max-position-embeddings 32768
--num-query-groups 8
--group-query-attention
--normalization RMSNorm
--position-embedding-type rope # none #
--untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
)
export NVTE_FLASH_ATTN=1 # 走cutlass
# export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
# --transformer-impl transformer_engine # 走core用这两组参数
# --use-mcore-models
# --transformer-impl local # 走legacy用这两组参数
# --use-legacy-models
TRAINING_ARGS=(
--transformer-impl local # 走legacy用这两组参数
--use-legacy-models
--micro-batch-size 1
--global-batch-size 1024 #256 #240 #60 #512 #64
--train-iters 50
--weight-decay 0.1
--adam-beta1 0.9
--adam-beta2 0.95
--init-method-std 0.006
--clip-grad 1.0
--bf16
# --fp16 # 开启fp16需要指定loss-scale
# --loss-scale 1024
--use-distributed-optimizer
--disable-bias-linear
--attention-dropout 0
--hidden-dropout 0
# --no-gradient-accumulation-fusion
--swiglu
--add-qkv-bias
--lr 3.0e-5
--lr-decay-style cosine
--min-lr 3.0e-6
--lr-warmup-iters 1
--ckpt-format torch
--ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
# --recompute-granularity full # 开启重计算降低显存增加耗时
# --recompute-num-layers 5 #0 #
# --recompute-method block
--overlap-grad-reduce # 重叠ddp grad reduce
# --tp-comm-overlap # tensor parallel comm和gemm重叠, 优化项未适配
# --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠
--use-flash-attn
)
# 使用torch fa的环境变量
# export TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1
# export TORCHINDUCTOR_BENCHMARK_FUSION=1
# export TORCHINDUCTOR_BENCHMARK_MULTI_TEMPLATES=1
# export TORCHINDUCTOR_MAX_AUTOTUNE=1
# export TORCHINDUCTOR_CACHE_DIR=./cache
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
# --use-flash-attn-torch # torch fa
MODEL_PARALLEL_ARGS=(
--sequence-parallel
--tensor-model-parallel-size 4
--pipeline-model-parallel-size 4
# --num-layers-per-virtual-pipeline-stage 4
# --microbatch-group-size-per-virtual-pipeline-stage 1
# --no-overlap-p2p-communication # 开启后
)
DATA_ARGS=(
--data-path $DATA_PATH
--seq-length 4096 #4096
--split 949,50,1
--tokenizer-type QwenTokenizer
--merge-file /public/home/wangxj/Downloads/model_weights/qwen1.5_14b/merges.txt
--vocab-file /public/home/wangxj/Downloads/model_weights/qwen1.5_14b/vocab.json
# --tokenizer-model /public/home/wangxj/Downloads/model_weights/llama2_7b_hf/tokenizer.model
# --tokenizer-model /data/model_weights/llama2_7b_hf/tokenizer.model
)
EVAL_AND_LOGGING_ARGS=(
--log-interval 1
--log-throughput
--save-interval 1000
--eval-interval 1000
--save $SAVE_PATH
--load $SAVE_PATH
--eval-iters 10
--tensorboard-dir $TENSORBOARD_LOGS_PATH
)
# FINETUNE_ARGS=(
# # --finetune
# # --pretrained-checkpoint $CHECKPOINT_PATH
# --load $CHECKPOINT_PATH
# --no-load-optim
# --no-load-rng
# )
PROFILE_ARGS=(
--profile
--profile-step-start 4
--profile-step-end 5
--use-pytorch-profiler
--profile-ranks 0 1 2 3 4 5 6 7
--profile-dir prof_data
)
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=34577
DISTRIBUTED_ARGS=(
--rank ${RANK}
--world-size ${WORLD_SIZE}
--local-rank ${LOCAL_RANK}
--dist-url tcp://${DIST_URL}:${DIST_PORT}
)
# torchrun --nproc_per_node 8 pretrain_gpt.py \
# ${GPT_MODEL_ARGS[@]} \
# ${TRAINING_ARGS[@]} \
# ${MODEL_PARALLEL_ARGS[@]} \
# ${DATA_ARGS[@]} \
# ${EVAL_AND_LOGGING_ARGS[@]}
APP="python -u ../../pretrain_gpt.py \
${GPT_MODEL_ARGS[@]} \
${TRAINING_ARGS[@]} \
${MODEL_PARALLEL_ARGS[@]} \
${DATA_ARGS[@]} \
${EVAL_AND_LOGGING_ARGS[@]} \
${DISTRIBUTED_ARGS[@]} \
"
# 开启profile
# ${PROFILE_ARGS[@]} \
# export HIP_VISIBLE_DEVICES=0,7 # # 4,5,6,7 #,
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 # # 4,5,6,7 #,
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
# ${APP}
case ${LOCAL_RANK} in
[0])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=0 --membind=0 ${APP}
;;
[1])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=1 --membind=1 ${APP}
;;
[2])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
numactl --cpunodebind=2 --membind=2 ${APP}
;;
[3])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=3 --membind=3 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[4])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=4 --membind=4 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[5])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=5 --membind=5 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[6])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=6 --membind=6 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
[7])
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
numactl --cpunodebind=7 --membind=7 ${APP}
# hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
;;
esac
python tools/preprocess_data.py \
--input /public/home/wangxj/Downloads/datasets/oscar-1GB-head/oscar-1GB_head.jsonl \
--output-prefix /public/home/wangxj/Downloads/datasets/oscar-1GB-head/oscar-1GB_head-qwen \
--vocab-file /public/home/wangxj/Downloads/model_weights/qwen1.5_14b/vocab.json \
--tokenizer-type QwenTokenizer \
--merge-file /public/home/wangxj/Downloads/model_weights/qwen1.5_14b/merges.txt \
--append-eod \
--workers 8
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment