README.md 3.04 KB
Newer Older
dongcl's avatar
dongcl committed
1
2
# Dcu Megatron

dongcl's avatar
dongcl committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

本项目通过替换megatron的函数或类,引入新的特性或者实现更好的性能。替换的函数或类注册在dcu_megatron/adaptor/megatron_adaptor.py。

+ 支持函数替换  

```
from ..core.distributed.finalize_model_grads import _allreduce_word_embedding_grads
MegatronAdaptation.register('megatron.core.distributed.finalize_model_grads._allreduce_word_embedding_grads',
                            _allreduce_word_embedding_grads)
```
以上代码将megatron的_allreduce_word_embedding_grads替换为自定义的_allreduce_word_embedding_grads。

+ 支持类替换

```
from ..core.transformer.transformer_config import TransformerConfig, MLATransformerConfig

# Transformer config
MegatronAdaptation.register('megatron.core.transformer.transformer_config.TransformerConfig',
                            TransformerConfig)
MegatronAdaptation.register('megatron.core.transformer.transformer_config.MLATransformerConfig',
                            MLATransformerConfig)                   
```
以上代码将megatron的TransformerConfig和MLATransformerConfig替换为自定义类型。

+ 支持基类替换
```
from megatron.core.extensions.transformer_engine import TEGroupedLinear

if int(os.getenv("GROUPED_GEMM_BatchLinear", '0')):
    TEGroupedLinear.__bases__ = (te.pytorch.BatchLinear,)
```
以上代码将TEGroupedLinear的父类替换为te.pytorch.BatchLinear。

+ 支持增加修饰器
```
MegatronAdaptation.register('megatron.core.transformer.moe.moe_utils.permute',
                            torch.compile(mode='max-autotune-no-cudagraphs'),
                            apply_wrapper=True)
MegatronAdaptation.register('megatron.core.transformer.moe.moe_utils.unpermute',
                            torch.compile(mode='max-autotune-no-cudagraphs'),
                            apply_wrapper=True)
```
以上代码对permute和unpermute函数增加修饰器,效果如下:
```
@torch.compile(mode='max-autotune-no-cudagraphs')
def permute(
    tokens,
    routing_map,
    num_out_tokens: Optional[int] = None,
    fused: bool = False,
    drop_and_pad: bool = False,
):

@torch.compile(mode='max-autotune-no-cudagraphs')
def unpermute(
    permuted_tokens: torch.Tensor,
    sorted_indices: torch.Tensor,
    restore_shape: torch.Size,
    probs: torch.Tensor = None,
    routing_map: torch.Tensor = None,
    fused: bool = False,
    drop_and_pad: bool = False,
):
```

dongcl's avatar
dongcl committed
69
70
71
72
### 项目支持使用[flux kernel](http://10.6.10.68/dcutoolkit/deeplearing/flux)
在tp场景下,用户可以选择使用flux通算融合算子,获得更好的训练和推理性能。项目通过替换transformer engine方法集成flux,使用时需要设置环境变量USE_FLUX_OVERLAP=1,并设置transformer-impl为transformer_engine。


dongcl's avatar
dongcl committed
73
### 使用方式
wxj's avatar
wxj committed
74
75
76

建议优先使用core0.12.0版本

77
在使用时,进入到examples目录下,有相关模型执行脚本,所用数据集请自行下载:https://r0ddbu55vzx.feishu.cn/drive/folder/ZxHHfCoX4lg75td2hTqcmiAin3g
silencealiang's avatar
silencealiang committed
78
```
silencealiang's avatar
update  
silencealiang committed
79
80
examples/
├── deepseek_v3
81
├── gpt3
silencealiang's avatar
update  
silencealiang committed
82
83
84
├── llama
├── mixtral
└── qwen
silencealiang's avatar
silencealiang committed
85
```
dongcl's avatar
dongcl committed
86