train_llama2_7b_1nodes.sh 4.09 KB
Newer Older
silencealiang's avatar
silencealiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/bin/bash

INITIALIZATION_ARGS=( --num-workers 2)

for para in $*
do
    if [[ $para == --data_path* ]];then
        data_path=${para#*=}
    elif [[ $para == --tokenizer_path* ]];then
        tokenizer_path=${para#*=}
    elif [[ $para == --checkpoint_path* ]];then
        checkpoint_path=${para#*=}
    elif [[ $para == --profiling* ]];then
        profiling=${para#*=}
    elif [[ $para == --reproduce* ]];then
        INITIALIZATION_ARGS=( --reproduce --num-workers 0)
        export MIOPEN_DEBUG_CONVOLUTION_DETERMINISTIC=1  # miopen 确定算法打开
        export ROCBLAS_ATOMICS_MOD=0                     # rocblas 关闭原子操作
        # 关闭miopen中的atomic操作算法, 只保留gemm算法
        export MIOPEN_DEBUG_CONV_FFT=0
        export MIOPEN_DEBUG_CONV_DIRECT=0
        export MIOPEN_DEBUG_CONV_GEMM=1
        export MIOPEN_DEBUG_CONV_WINOGRAD=0
        export MIOPEN_DEBUG_CONV_IMPLICIT_GEMM=0
    fi
done

# data path
DATA_PATH=${data_path}
TOKENIZER_MODEL_PATH=${tokenizer_path}
CHECKPOINT_PATH=${checkpoint_path}

# default env
DIST_URL=${1}
DIST_PORT=${2}
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
CURRENT_DIR="$( cd "$( dirname "$0" )" && pwd )"
MEGATRON_PATH=$( dirname $( dirname ${CURRENT_DIR}))
export GLOG_minloglevel=3
export CUDA_DEVICE_MAX_CONNECTIONS=1
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export GPU_MAX_HW_QUEUES=10
export PYTHONPATH=${MEGATRON_PATH}/Megatron-LM:$PYTHONPATH

# torch控制多流转单流
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export SENDRECV_STREAM_WITH_COMPUTE=1 

#增加编译缓存
export cache_size_limit=64

DISTRIBUTED_ARGS=(
    --rank ${RANK}
    --world-size ${WORLD_SIZE}
    --local-rank ${LOCAL_RANK}
    --dist-url tcp://${DIST_URL}:${DIST_PORT}
)

GPT_MODEL_ARGS=(
    --seq-length 4096
    --num-layers 32
    --hidden-size 4096
    --ffn-hidden-size 11008 
    --num-attention-heads 32
    --max-position-embeddings 4096
    --normalization LightopRMSNorm
    --position-embedding-type rope
    --untie-embeddings-and-output-weights
)

TRAINING_ARGS=(
    --transformer-impl local
    --use-legacy-models 
    --micro-batch-size 1
    --global-batch-size 256
    --train-iters 50
    --weight-decay 0.1 
    --adam-beta1 0.9 
    --adam-beta2 0.95 
    --init-method-std 0.006 
    --clip-grad 1.0 
    --bf16
    --disable-bias-linear
    --attention-dropout 0
    --hidden-dropout 0
    --swiglu
    --lr 3.0e-5 
    --lr-decay-style cosine 
    --min-lr 3.0e-6
    --lr-warmup-iters 1
    --ckpt-format torch
    --ddp-average-in-collective
    --overlap-grad-reduce
    --use-flash-attn
)

MODEL_PARALLEL_ARGS=(
    --tensor-model-parallel-size 1
    --pipeline-model-parallel-size 2
    --context-parallel-size 1
    --use-distributed-optimizer 
    --sequence-parallel
)

DATA_ARGS=(
    --tokenizer-type Llama2Tokenizer
    --tokenizer-model ${TOKENIZER_MODEL_PATH}
    --data-path ${DATA_PATH} 
    --split 949,50,1
)

EVAL_AND_LOGGING_ARGS=(
    --log-throughput
    --eval-iters 5
    --log-interval 1
    --save-interval 1000 
    --eval-interval 1000 
    --save $CHECKPOINT_PATH
    --load $CHECKPOINT_PATH
    --tensorboard-dir "${CHECKPOINT_PATH}/tensorboard" 
)

TORCH_PROFIE_ARGS=(
    --profile
    --profile-ranks 0 1 2 3 4 5 6 7
    --profile-step-start 3
    --profile-step-end 4
    --profile-dir torch_prof_llama_1nodes_tp1-pp2-cp1
    --use-pytorch-profiler
)

HIP_PROFIE_ARGS=(
    --profile
    --profile-ranks 0 1 2 3 4 5 6 7
    --profile-step-start 4
    --profile-step-end 5
    --use-hip-profiler
)

APP="python -u ${MEGATRON_PATH}/pretrain_gpt.py \
    ${GPT_MODEL_ARGS[@]} \
    ${TRAINING_ARGS[@]} \
    ${MODEL_PARALLEL_ARGS[@]} \
    ${DATA_ARGS[@]} \
    ${EVAL_AND_LOGGING_ARGS[@]} \
    ${DISTRIBUTED_ARGS[@]} \
    ${INITIALIZATION_ARGS[@]} \
    "

if [[ $profiling == "torch" ]]; then
    APP+=" ${TORCH_PROFIE_ARGS[@]}"
elif [[ $profiling == "hip" ]]; then
    mkdir -p hip_prof_data
    APP+=" ${HIP_PROFIE_ARGS[@]}"
    APP="hipprof -d hip_prof_data --hip-trace --trace-off ${APP}"
fi

#for hygon cpu
silencealiang's avatar
silencealiang committed
162
${MEGATRON_PATH}/requirements/launch_with_binding.sh ${LOCAL_RANK} ${APP}