Llama_pretraining.sh 6.29 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/bin/bash
set -eux
#export FLASH_ATTENTION_PRINT_PARAM=1
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=PXB # SYS
#export HIP_ALLOC_INITIALIZE=0
# export GPU_MAX_HW_QUEUES=10
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=16
export NCCL_MIN_NCHANNELS=32 # 20
export NCCL_MAX_NCHANNELS=32 # 20
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_IB_HCA=mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_5:1,mlx5_6:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
export NCCL_NET_GDR_LEVEL=7
export NCCL_NET_GDR_READ=1
export RCCL_SDMA_COPY_ENABLE=0
export GLOG_minloglevel=3 # 打印error级别的nccl日志
export ALLREDUCE_STREAM_WITH_COMPUTE=1
export SENDRECV_STREAM_WITH_COMPUTE=1
export cache_size_limit=64
SAVE_PATH=./tmp_7b
TENSORBOARD_LOGS_PATH=./tmp_7b  #$2 #<Specify path>
DATA_PATH="/models/datasets/openwebtext/openwebtext-llama-7b/openwebtext-llama-7b_text_document" #<Specify path and file prefix>_text_document
GPT_MODEL_ARGS=(
    --num-layers 32
    --hidden-size 4096
    --ffn-hidden-size 11008 
    --num-attention-heads 32
    --max-position-embeddings 4096
    --normalization RMSNorm 
    --position-embedding-type rope # none # 
    --untie-embeddings-and-output-weights # 分开处理embed和输出权重, 增加灵活性
)
export NVTE_FLASH_ATTN=1 # 走cutlass
# export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa
# --transformer-impl transformer_engine # 走core用这两组参数
    # --use-mcore-models
    # --transformer-impl local # 走legacy用这两组参数
    # --use-legacy-models 
TRAINING_ARGS=(
    --transformer-impl local # 走legacy用这两组参数
    --use-legacy-models 
    --micro-batch-size 1
    --global-batch-size 64 #32 #240 #60 #512 #64
    --train-iters 50
    --weight-decay 0.1 
    --adam-beta1 0.9 
    --adam-beta2 0.95 
    --init-method-std 0.006 
    --clip-grad 1.0 
    --bf16
    # --fp16 # 开启fp16需要指定loss-scale
    # --loss-scale 1024
    --use-distributed-optimizer 
    --disable-bias-linear
    --attention-dropout 0
    --hidden-dropout 0
    # --no-gradient-accumulation-fusion
    --swiglu
    --lr 3.0e-5 
    --lr-decay-style cosine 
    --min-lr 3.0e-6
    --lr-warmup-iters 1
    --ckpt-format torch
    --ddp-average-in-collective # 在dp阶段通信中, 梯度或参数将被直接平均, 而不是先求和(到一个设备)再平均
    # --recompute-granularity full # 开启重计算降低显存增加耗时
    # --recompute-num-layers 5 #0 #
    # --recompute-method block
    --overlap-grad-reduce # 重叠ddp grad reduce
    # --tp-comm-overlap # tensor parallel comm和gemm重叠, 优化项未适配
    # --tp-comm-overlap-rs-dgrad # reduce-scatter和dgrad gemm重叠
    --use-flash-attn-cutlass
)
# 使用torch fa的环境变量
# export TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1
# export TORCHINDUCTOR_BENCHMARK_FUSION=1
# export TORCHINDUCTOR_BENCHMARK_MULTI_TEMPLATES=1
# export TORCHINDUCTOR_MAX_AUTOTUNE=1
# export TORCHINDUCTOR_CACHE_DIR=./cache
# --use-flash-attn-cutlass # cutlass fa
# --use-flash-attn-triton # triton fa
# --use-flash-attn-torch # torch fa
MODEL_PARALLEL_ARGS=(
    --sequence-parallel
	--tensor-model-parallel-size 1
	--pipeline-model-parallel-size 2
    # --context-parallel-size 2
    # --num-layers-per-virtual-pipeline-stage 4
  # --microbatch-group-size-per-virtual-pipeline-stage 1
#   --no-overlap-p2p-communication # 开启后
)
DATA_ARGS=(
    --data-path $DATA_PATH 
    --seq-length 4096 #4096
    --split 949,50,1
    --tokenizer-type Llama2Tokenizer
    --tokenizer-model /models1/Llama-2-7b-chat-hf/tokenizer.model       
    # --tokenizer-model /data/model_weights/llama2_7b_hf/tokenizer.model
)
EVAL_AND_LOGGING_ARGS=(
    --log-interval 1
    --log-throughput
    --save-interval 1000 
    --eval-interval 1000 
    #--save $SAVE_PATH 
    #--load $SAVE_PATH 
    --eval-iters 3
    --tensorboard-dir $TENSORBOARD_LOGS_PATH 
)
# FINETUNE_ARGS=(
#     # --finetune
#     # --pretrained-checkpoint $CHECKPOINT_PATH
#     --load $CHECKPOINT_PATH
#     --no-load-optim
#     --no-load-rng
# )
PROFILE_ARGS=(
    --profile
    --profile-step-start 4
    --profile-step-end 5
    --use-pytorch-profiler
    --profile-ranks 0 1 2 3 4 5 6 7
    --profile-dir prof_data
)
RANK=$OMPI_COMM_WORLD_RANK
LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE
DIST_URL=${1}
DIST_PORT=34577
DISTRIBUTED_ARGS=(
    --rank ${RANK}
    --world-size ${WORLD_SIZE}
    --local-rank ${LOCAL_RANK}
    --dist-url tcp://${DIST_URL}:${DIST_PORT}
)
APP="python -u pretrain_gpt.py \
        ${GPT_MODEL_ARGS[@]} \
        ${TRAINING_ARGS[@]} \
        ${MODEL_PARALLEL_ARGS[@]} \
        ${DATA_ARGS[@]} \
        ${EVAL_AND_LOGGING_ARGS[@]} \
        ${DISTRIBUTED_ARGS[@]} \
"
# 开启profile
# ${PROFILE_ARGS[@]} \
# export HIP_VISIBLE_DEVICES=0,7 #  # 4,5,6,7 #,
export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 #  # 4,5,6,7 #,
# export CUDA_VISIBLE_DEVICES=4,5,6,7 # 0,1,2,3,
# ${APP}
case ${LOCAL_RANK} in
[0])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
  numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[1])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
  numactl --cpunodebind=1 --membind=1 ${APP}
  ;;
[2])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
  numactl --cpunodebind=2 --membind=2 ${APP}
  ;;
[3])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=3 --membind=3 ${APP}
  # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[4])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=4 --membind=4 ${APP}
  # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[5])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=5 --membind=5 ${APP}
  # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[6])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=6 --membind=6 ${APP}
  # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[7])
  export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=7 --membind=7 ${APP}
  # hipprof --hip-trace --trace-off numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
esac