rwsadagrad.py 5.42 KB
Newer Older
xinghao's avatar
xinghao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


import torch
from torch.optim import Optimizer


class RWSAdagrad(Optimizer):
    """Implements Row Wise Sparse Adagrad algorithm.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-2)
        lr_decay (float, optional): learning rate decay (default: 0)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-10)

    """

    def __init__(
        self,
        params,
        lr=1e-2,
        lr_decay=0.0,
        weight_decay=0.0,
        initial_accumulator_value=0.0,
        eps=1e-10,
    ):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= lr_decay:
            raise ValueError("Invalid lr_decay value: {}".format(lr_decay))
        if not 0.0 <= weight_decay:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        if not 0.0 <= initial_accumulator_value:
            raise ValueError(
                "Invalid initial_accumulator_value value: {}".format(
                    initial_accumulator_value
                )
            )
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))

        self.defaults = dict(
            lr=lr,
            lr_decay=lr_decay,
            eps=eps,
            weight_decay=weight_decay,
            initial_accumulator_value=initial_accumulator_value,
        )
        super(RWSAdagrad, self).__init__(params, self.defaults)

        self.momentum_initialized = False

        for group in self.param_groups:
            for p in group["params"]:
                self.state[p]["step"] = 0

    def share_memory(self):
        for group in self.param_groups:
            for p in group["params"]:
                state = self.state[p]
                if p.grad.data.is_sparse:
                    state["momentum"].share_memory_()
                else:
                    state["sum"].share_memory_()

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue

                if not self.momentum_initialized:
                    if p.grad.data.is_sparse:
                        self.state[p]["momentum"] = torch.full(
                            [p.data.shape[0]],
                            self.defaults["initial_accumulator_value"],
                            dtype=torch.float32,
                        )
                    else:
                        self.state[p]["sum"] = torch.full_like(
                            p.data,
                            self.defaults["initial_accumulator_value"],
                            dtype=torch.float32,
                        )

                grad = p.grad
                state = self.state[p]

                state["step"] += 1

                if group["weight_decay"] != 0:
                    if p.grad.data.is_sparse:
                        raise RuntimeError(
                            "weight_decay option is not compatible with sparse gradients"
                        )
                    grad = grad.add(group["weight_decay"], p.data)

                clr = group["lr"] / (1.0 + (state["step"] - 1.0) * group["lr_decay"])

                if grad.is_sparse:
                    grad = (
                        grad.coalesce()
                    )  # the update is non-linear so indices must be unique
                    grad_indices = grad._indices()
                    grad_values = grad._values()
                    size = grad.size()

                    def make_sparse(values, row_wise):
                        constructor = grad.new
                        matrix_size = [size[0]] if row_wise else size
                        return constructor(grad_indices, values, matrix_size)

                    if grad_values.numel() > 0:
                        momentum_update = make_sparse(
                            grad_values.pow(2).mean(dim=1), True
                        )
                        state["momentum"].add_(momentum_update)  # update momentum
                        std = state["momentum"].sparse_mask(momentum_update.coalesce())
                        std_values = std._values().sqrt_().add_(group["eps"])
                        p.data.add_(
                            make_sparse(
                                grad_values / std_values.view(std_values.size()[0], 1),
                                False,
                            ),
                            alpha=-clr,
                        )

                else:
                    state["sum"].addcmul_(grad, grad, value=1.0)
                    std = state["sum"].sqrt().add_(group["eps"])
                    p.data.addcdiv_(grad, std, value=-clr)

        self.momentum_initialized = True

        return loss