perf_train_special.md 1.9 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->

# Apple Silicon

Apple Silicon (M series) features a unified memory architecture, making it possible to efficiently train large models locally and improves performance by reducing latency associated with data retrieval. You can take advantage of Apple Silicon for training with PyTorch due to its integration with [Metal Performance Shaders (MPS)](https://pytorch.org/docs/stable/notes/mps.html).

The `mps` backend requires macOS 12.3 or later.

> [!WARNING]
> Some PyTorch operations are not implemented in MPS yet. To avoid an error, set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1` to fallback on the CPU kernels. Please open an issue in the [PyTorch](https://github.com/pytorch/pytorch/issues) repository if you encounter any other issues.

[`TrainingArguments`] and [`Trainer`] detects and sets the backend device to `mps` if an Apple Silicon device is available. No additional changes are required to enable training on your device.

The `mps` backend doesn't support [distributed training](https://pytorch.org/docs/stable/distributed.html#backends).

## Resources

Learn more about the MPS backend in the [Introducing Accelerated PyTorch Training on Mac](https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/) blog post.