whisper.md 4.78 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2022-12-06 and added to Hugging Face Transformers on 2022-10-05.*

<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
        <img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
        <img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
    </div>
</div>

# Whisper

[Whisper](https://huggingface.co/papers/2212.04356) is a encoder-decoder (sequence-to-sequence) transformer pretrained on 680,000 hours of labeled audio data. This amount of pretraining data enables zero-shot performance on audio tasks in English and many other languages. The decoder allows Whisper to map the encoders learned speech representations to useful outputs, such as text, without additional fine-tuning. Whisper just works out of the box.

You can find all the original Whisper checkpoints under the [Whisper](https://huggingface.co/collections/openai/whisper-release-6501bba2cf999715fd953013) collection.

> [!TIP]
> Click on the Whisper models in the right sidebar for more examples of how to apply Whisper to different audio tasks.

The example below demonstrates how to automatically transcribe speech into text with [`Pipeline`] or the [`AutoModel`] class.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline

pipeline = pipeline(
    task="automatic-speech-recognition",
    model="openai/whisper-large-v3-turbo",
    dtype=torch.float16,
    device=0
)
pipeline("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")
```

</hfoption>
<hfoption id="AutoModel">

```py
# pip install datasets
import torch
from datasets import load_dataset
from transformers import AutoProcessor, WhisperForConditionalGeneration

processor = AutoProcessor.from_pretrained(
    "openai/whisper-large-v3-turbo",
)
model = WhisperForConditionalGeneration.from_pretrained(
    "openai/whisper-large-v3-turbo",
    dtype=torch.float16,
    device_map="auto",
    attn_implementation="sdpa"
)

ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = ds[0]["audio"]

input_features = processor(
    audio_sample["array"],
    sampling_rate=audio_sample["sampling_rate"],
    return_tensors="pt"
).input_features
input_features = input_features.to(model.device, dtype=torch.float16)

predicted_ids = model.generate(input_features, cache_implementation="static")
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
transcription[0]
```

</hfoption>
</hfoptions>

## Notes

- Whisper relies a custom [`generate`] for inference, make sure to check the docs below.
- The [`WhisperProcessor`] can be used for preparing audio and decoding predicted ids back into text.

## WhisperConfig

[[autodoc]] WhisperConfig

## WhisperTokenizer

[[autodoc]] WhisperTokenizer
    - set_prefix_tokens
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary
    - batch_decode
    - decode
    - basic_normalize
    - normalize

## WhisperTokenizerFast

[[autodoc]] WhisperTokenizerFast
    - set_prefix_tokens
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary
    - batch_decode
    - decode
    - basic_normalize
    - normalize

## WhisperFeatureExtractor

[[autodoc]] WhisperFeatureExtractor
    - __call__

## WhisperProcessor

[[autodoc]] WhisperProcessor
    - __call__
    - from_pretrained
    - save_pretrained
    - batch_decode
    - decode

## WhisperModel

[[autodoc]] WhisperModel
    - forward
    - _mask_input_features

## WhisperForConditionalGeneration

[[autodoc]] WhisperForConditionalGeneration
    - forward
    - generate

## WhisperForCausalLM

[[autodoc]] WhisperForCausalLM
    - forward

## WhisperForAudioClassification

[[autodoc]] WhisperForAudioClassification
    - forward