vitpose.md 12.5 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
*This model was released on 2022-04-26 and added to Hugging Face Transformers on 2025-01-08.*

<div style="float: right;">
  <div class="flex flex-wrap space-x-1">
    <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
  </div>
</div>

# ViTPose

[ViTPose](https://huggingface.co/papers/2204.12484) is a vision transformer-based model for keypoint (pose) estimation. It uses a simple, non-hierarchical [ViT](./vit) backbone and a lightweight decoder head. This architecture simplifies model design, takes advantage of transformer scalability, and can be adapted to different training strategies.

[ViTPose++](https://huggingface.co/papers/2212.04246) improves on ViTPose by incorporating a mixture-of-experts (MoE) module in the backbone and using more diverse pretraining data.

<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitpose-architecture.png"
alt="drawing" width="600"/>

You can find all ViTPose and ViTPose++ checkpoints under the [ViTPose collection](https://huggingface.co/collections/usyd-community/vitpose-677fcfd0a0b2b5c8f79c4335).

The example below demonstrates pose estimation with the [`VitPoseForPoseEstimation`] class.

```py
import torch
import requests
import numpy as np
import supervision as sv
from PIL import Image
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation
from accelerate import Accelerator

device = Accelerator().device

url = "https://www.fcbarcelona.com/fcbarcelona/photo/2021/01/31/3c55a19f-dfc1-4451-885e-afd14e890a11/mini_2021-01-31-BARCELONA-ATHLETIC-BILBAOI-30.JPG"
image = Image.open(requests.get(url, stream=True).raw)

# Detect humans in the image
person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)

inputs = person_image_processor(images=image, return_tensors="pt").to(person_model.device)

with torch.no_grad():
    outputs = person_model(**inputs)

results = person_image_processor.post_process_object_detection(
    outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0]

# Human label refers 0 index in COCO dataset
person_boxes = result["boxes"][result["labels"] == 0]
person_boxes = person_boxes.cpu().numpy()

# Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format
person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]

# Detect keypoints for each person found
image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-base-simple")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-base-simple", device_map=device)

inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model(**inputs)

pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0]

xy = torch.stack([pose_result['keypoints'] for pose_result in image_pose_result]).cpu().numpy()
scores = torch.stack([pose_result['scores'] for pose_result in image_pose_result]).cpu().numpy()

key_points = sv.KeyPoints(
    xy=xy, confidence=scores
)

edge_annotator = sv.EdgeAnnotator(
    color=sv.Color.GREEN,
    thickness=1
)
vertex_annotator = sv.VertexAnnotator(
    color=sv.Color.RED,
    radius=2
)
annotated_frame = edge_annotator.annotate(
    scene=image.copy(),
    key_points=key_points
)
annotated_frame = vertex_annotator.annotate(
    scene=annotated_frame,
    key_points=key_points
)
annotated_frame
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitpose.png"/>
</div>

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.

The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.

```py
# pip install torchao
import torch
import requests
import numpy as np
from PIL import Image
from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation, TorchAoConfig

url = "https://www.fcbarcelona.com/fcbarcelona/photo/2021/01/31/3c55a19f-dfc1-4451-885e-afd14e890a11/mini_2021-01-31-BARCELONA-ATHLETIC-BILBAOI-30.JPG"
image = Image.open(requests.get(url, stream=True).raw)

person_image_processor = AutoProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365")
person_model = RTDetrForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365", device_map=device)

inputs = person_image_processor(images=image, return_tensors="pt").to(device)

with torch.no_grad():
    outputs = person_model(**inputs)

results = person_image_processor.post_process_object_detection(
    outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0]

person_boxes = result["boxes"][result["labels"] == 0]
person_boxes = person_boxes.cpu().numpy()

person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0]
person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1]

quantization_config = TorchAoConfig("int4_weight_only", group_size=128)

image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-huge")
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-huge", device_map=device, quantization_config=quantization_config)

inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device)

with torch.no_grad():
    outputs = model(**inputs)

pose_results = image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes])
image_pose_result = pose_results[0]
```

## Notes

- Use [`AutoProcessor`] to automatically prepare bounding box and image inputs.
- ViTPose is a top-down pose estimator. It uses a object detector to detect individuals first before keypoint prediction.
- ViTPose++ has 6 different MoE expert heads (COCO validation `0`, AiC `1`, MPII `2`, AP-10K `3`, APT-36K `4`, COCO-WholeBody `5`) which supports 6 different datasets. Pass a specific value corresponding to the dataset to the `dataset_index` to indicate which expert to use.

    ```py
    from transformers import AutoProcessor, VitPoseForPoseEstimation
    from accelerate import Accelerator

    device = Accelerator().device

    image_processor = AutoProcessor.from_pretrained("usyd-community/vitpose-plus-base")
    model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-plus-base", device=device)

    inputs = image_processor(image, boxes=[person_boxes], return_tensors="pt").to(model.device)
    dataset_index = torch.tensor([0], device=device) # must be a tensor of shape (batch_size,)

    with torch.no_grad():
        outputs = model(**inputs, dataset_index=dataset_index)
    ```

- [OpenCV](https://opencv.org/) is an alternative option for visualizing the estimated pose.

    ```py
    # pip install opencv-python
    import math
    import cv2

    def draw_points(image, keypoints, scores, pose_keypoint_color, keypoint_score_threshold, radius, show_keypoint_weight):
        if pose_keypoint_color is not None:
            assert len(pose_keypoint_color) == len(keypoints)
        for kid, (kpt, kpt_score) in enumerate(zip(keypoints, scores)):
            x_coord, y_coord = int(kpt[0]), int(kpt[1])
            if kpt_score > keypoint_score_threshold:
                color = tuple(int(c) for c in pose_keypoint_color[kid])
                if show_keypoint_weight:
                    cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)
                    transparency = max(0, min(1, kpt_score))
                    cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
                else:
                    cv2.circle(image, (int(x_coord), int(y_coord)), radius, color, -1)

    def draw_links(image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold, thickness, show_keypoint_weight, stick_width = 2):
        height, width, _ = image.shape
        if keypoint_edges is not None and link_colors is not None:
            assert len(link_colors) == len(keypoint_edges)
            for sk_id, sk in enumerate(keypoint_edges):
                x1, y1, score1 = (int(keypoints[sk[0], 0]), int(keypoints[sk[0], 1]), scores[sk[0]])
                x2, y2, score2 = (int(keypoints[sk[1], 0]), int(keypoints[sk[1], 1]), scores[sk[1]])
                if (
                    x1 > 0
                    and x1 < width
                    and y1 > 0
                    and y1 < height
                    and x2 > 0
                    and x2 < width
                    and y2 > 0
                    and y2 < height
                    and score1 > keypoint_score_threshold
                    and score2 > keypoint_score_threshold
                ):
                    color = tuple(int(c) for c in link_colors[sk_id])
                    if show_keypoint_weight:
                        X = (x1, x2)
                        Y = (y1, y2)
                        mean_x = np.mean(X)
                        mean_y = np.mean(Y)
                        length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
                        angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
                        polygon = cv2.ellipse2Poly(
                            (int(mean_x), int(mean_y)), (int(length / 2), int(stick_width)), int(angle), 0, 360, 1
                        )
                        cv2.fillConvexPoly(image, polygon, color)
                        transparency = max(0, min(1, 0.5 * (keypoints[sk[0], 2] + keypoints[sk[1], 2])))
                        cv2.addWeighted(image, transparency, image, 1 - transparency, 0, dst=image)
                    else:
                        cv2.line(image, (x1, y1), (x2, y2), color, thickness=thickness)

    # Note: keypoint_edges and color palette are dataset-specific
    keypoint_edges = model.config.edges

    palette = np.array(
        [
            [255, 128, 0],
            [255, 153, 51],
            [255, 178, 102],
            [230, 230, 0],
            [255, 153, 255],
            [153, 204, 255],
            [255, 102, 255],
            [255, 51, 255],
            [102, 178, 255],
            [51, 153, 255],
            [255, 153, 153],
            [255, 102, 102],
            [255, 51, 51],
            [153, 255, 153],
            [102, 255, 102],
            [51, 255, 51],
            [0, 255, 0],
            [0, 0, 255],
            [255, 0, 0],
            [255, 255, 255],
        ]
    )

    link_colors = palette[[0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16]]
    keypoint_colors = palette[[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0]]

    numpy_image = np.array(image)

    for pose_result in image_pose_result:
        scores = np.array(pose_result["scores"])
        keypoints = np.array(pose_result["keypoints"])

        # draw each point on image
        draw_points(numpy_image, keypoints, scores, keypoint_colors, keypoint_score_threshold=0.3, radius=4, show_keypoint_weight=False)

        # draw links
        draw_links(numpy_image, keypoints, scores, keypoint_edges, link_colors, keypoint_score_threshold=0.3, thickness=1, show_keypoint_weight=False)

    pose_image = Image.fromarray(numpy_image)
    pose_image
    ```

## Resources

Refer to resources below to learn more about using ViTPose.

- This [notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/ViTPose/Inference_with_ViTPose_for_body_pose_estimation.ipynb) demonstrates inference and visualization.
- This [Space](https://huggingface.co/spaces/hysts/ViTPose-transformers) demonstrates ViTPose on images and video.

## VitPoseImageProcessor

[[autodoc]] VitPoseImageProcessor
    - preprocess
    - post_process_pose_estimation

## VitPoseConfig

[[autodoc]] VitPoseConfig

## VitPoseForPoseEstimation

[[autodoc]] VitPoseForPoseEstimation
    - forward