siglip.md 6.79 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2023-03-27 and added to Hugging Face Transformers on 2024-01-08.*

<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
            <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
            <img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
            <img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
    </div>
</div>

# SigLIP

[SigLIP](https://huggingface.co/papers/2303.15343) is a multimodal image-text model similar to [CLIP](clip). It uses separate image and text encoders to generate representations for both modalities.

Unlike CLIP, SigLIP employs a pairwise sigmoid loss on image-text pairs during training. This training loss eliminates the need for a global view of all pairwise similarities between images and texts within a batch. Consequently, it enables more efficient scaling to larger batch sizes while also delivering superior performance with smaller batch sizes.

You can find all the original SigLIP checkpoints under the [SigLIP](https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba) collection.

> [!TIP]
> Click on the SigLIP models in the right sidebar for more examples of how to apply SigLIP to different image and text tasks.

The example below demonstrates how to generate similarity scores between texts and image(s) with [`Pipeline`] or the [`AutoModel`] class.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline

image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]

pipeline = pipeline(task="zero-shot-image-classification", model="google/siglip-base-patch16-224", device=0, dtype=torch.bfloat16)
pipeline(image, candidate_labels=candidate_labels)
```

</hfoption>
<hfoption id="AutoModel">

```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel

model = AutoModel.from_pretrained("google/siglip-base-patch16-224", dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")

url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
texts = [f'This is a photo of {label}.' for label in candidate_labels]
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model(**inputs)

logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
```

</hfoption>
</hfoptions>

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.

The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.

```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel, BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModel.from_pretrained("google/siglip-base-patch16-224", quantization_config=bnb_config, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")

url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
texts = [f'This is a photo of {label}.' for label in candidate_labels]
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model(**inputs)

logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
```

## Notes

- Training is supported for DDP and FSDP on single-node multi-GPU setups. However, it does not use [torch.distributed](https://pytorch.org/tutorials/beginner/dist_overview.html) utilities which may limit the scalability of batch size.
- When using the standalone [`SiglipTokenizer`] or [`SiglipProcessor`], make sure to pass `padding="max_length"` because that is how the model was trained.
- To get the same results as the [`Pipeline`], a prompt template of `"This is a photo of {label}."` should be passed to the processor.
- Toggle the `attn_implementation` parameter to either `"sdpa"` or `"flash_attention_2"` to use a more memory-efficient attention.

    ```py
    # pip install -U flash-attn --no-build-isolation

    from transformers import SiglipModel

    model = SiglipModel.from_pretrained(
        "google/siglip-so400m-patch14-384",
        attn_implementation="flash_attention_2",
        dtype=torch.float16,
        device_map=device,
    )
    ```

## SiglipConfig

[[autodoc]] SiglipConfig

## SiglipTextConfig

[[autodoc]] SiglipTextConfig

## SiglipVisionConfig

[[autodoc]] SiglipVisionConfig

## SiglipTokenizer

[[autodoc]] SiglipTokenizer
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary

## SiglipImageProcessor

[[autodoc]] SiglipImageProcessor
    - preprocess

## SiglipImageProcessorFast

[[autodoc]] SiglipImageProcessorFast
    - preprocess

## SiglipProcessor

[[autodoc]] SiglipProcessor

## SiglipModel

[[autodoc]] SiglipModel
    - forward
    - get_text_features
    - get_image_features

## SiglipTextModel

[[autodoc]] SiglipTextModel
    - forward

## SiglipVisionModel

[[autodoc]] SiglipVisionModel
    - forward

## SiglipForImageClassification

[[autodoc]] SiglipForImageClassification
    - forward