plbart.md 5.93 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2021-03-10 and added to Hugging Face Transformers on 2022-02-18.*

# PLBart

<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>

## Overview

The PLBART model was proposed in [Unified Pre-training for Program Understanding and Generation](https://huggingface.co/papers/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
This is a BART-like model which can be used to perform code-summarization, code-generation, and code-translation tasks. The pre-trained model `plbart-base` has been trained using multilingual denoising task
on Java, Python and English.

According to the abstract

*Code summarization and generation empower conversion between programming language (PL) and natural language (NL),
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks.
PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding.
Experiments on code summarization in the English language, code generation, and code translation in seven programming languages
show that PLBART outperforms or rivals state-of-the-art models. Moreover, experiments on discriminative tasks, e.g., program
repair, clone detection, and vulnerable code detection, demonstrate PLBART's effectiveness in program understanding.
Furthermore, analysis reveals that PLBART learns program syntax, style (e.g., identifier naming convention), logical flow
(e.g., if block inside an else block is equivalent to else if block) that are crucial to program semantics and thus excels
even with limited annotations.*

This model was contributed by [gchhablani](https://huggingface.co/gchhablani). The Authors' code can be found [here](https://github.com/wasiahmad/PLBART).

## Usage examples

PLBart is a multilingual encoder-decoder (sequence-to-sequence) model primarily intended for code-to-text, text-to-code, code-to-code tasks. As the
model is multilingual it expects the sequences in a different format. A special language id token is added in both the
source and target text. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The
target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.

However, for fine-tuning, in some cases no language token is provided in cases where a single language is used. Please refer to [the paper](https://huggingface.co/papers/2103.06333) to learn more about this.

In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
when you pass texts as the first argument or with the keyword argument `text`, and will encode target text format if
it's passed with the `text_target` keyword argument.

### Supervised training

```python
>>> from transformers import PLBartForConditionalGeneration, PLBartTokenizer

>>> tokenizer = PLBartTokenizer.from_pretrained("uclanlp/plbart-base", src_lang="en_XX", tgt_lang="python")
>>> example_python_phrase = "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])"
>>> expected_translation_english = "Returns the maximum value of a b c."
>>> inputs = tokenizer(example_python_phrase, text_target=expected_translation_english, return_tensors="pt")
>>> model(**inputs)
```

### Generation

  While generating the target text set the `decoder_start_token_id` to the target language id. The following
  example shows how to translate Python to English using the `uclanlp/plbart-python-en_XX` model.

```python
>>> from transformers import PLBartForConditionalGeneration, PLBartTokenizer

>>> tokenizer = PLBartTokenizer.from_pretrained("uclanlp/plbart-python-en_XX", src_lang="python", tgt_lang="en_XX")
>>> example_python_phrase = "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])"
>>> inputs = tokenizer(example_python_phrase, return_tensors="pt")
>>> model = PLBartForConditionalGeneration.from_pretrained("uclanlp/plbart-python-en_XX")
>>> translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["en_XX"])
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
"Returns the maximum value of a b c."
```

## Resources

- [Text classification task guide](../tasks/sequence_classification)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)

## PLBartConfig

[[autodoc]] PLBartConfig

## PLBartTokenizer

[[autodoc]] PLBartTokenizer
    - build_inputs_with_special_tokens

## PLBartModel

[[autodoc]] PLBartModel
    - forward

## PLBartForConditionalGeneration

[[autodoc]] PLBartForConditionalGeneration
    - forward

## PLBartForSequenceClassification

[[autodoc]] PLBartForSequenceClassification
    - forward

## PLBartForCausalLM

[[autodoc]] PLBartForCausalLM
    - forward