olmo2.md 4.96 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2024-12-31 and added to Hugging Face Transformers on 2024-11-25.*

<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
        <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
        <img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
        <img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
    </div>
</div>

# OLMo2

[OLMo2](https://huggingface.co/papers/2501.00656) improves on [OLMo](./olmo) by changing the architecture and training recipes of the original models. This includes excluding all biases to improve training stability, non-parametric layer norm, SwiGLU activation function, rotary positional embeddings, and a modified BPE-based tokenizer that masks personal identifiable information. It is pretrained on [Dolma](https://huggingface.co/datasets/allenai/dolma), a dataset of 3T tokens.

You can find all the original OLMo2 checkpoints under the [OLMo2](https://huggingface.co/collections/allenai/olmo-2-674117b93ab84e98afc72edc) collection.

> [!TIP]
> Click on the OLMo2 models in the right sidebar for more examples of how to apply OLMo2 to different language tasks.

The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline

pipe = pipeline(
    task="text-generation",
    model="allenai/OLMo-2-0425-1B",
    dtype=torch.float16,
    device=0,
)

result = pipe("Plants create energy through a process known as")
print(result)
```

</hfoption>
<hfoption id="AutoModel">

```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
    "allenai/OLMo-2-0425-1B"
)

model = AutoModelForCausalLM.from_pretrained(
    "allenai/OLMo-2-0425-1B",
    dtype=torch.float16,
    device_map="auto",
    attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)

output = model.generate(**input_ids, max_length=50, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

</hfoption>
<hfoption id="transformers CLI">

```bash
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model allenai/OLMo-2-0425-1B --device 0
```

</hfoption>
</hfoptions>

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.

The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bits.

```py

#pip install torchao
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

torchao_config = TorchAoConfig(
    "int4_weight_only",
    group_size=128
)

tokenizer = AutoTokenizer.from_pretrained(
    "allenai/OLMo-2-0425-1B"
)

model = AutoModelForCausalLM.from_pretrained(
    "allenai/OLMo-2-0425-1B",
    quantization_config=torchao_config,
    dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)

output = model.generate(**input_ids, max_length=50, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))

```

## Notes

- OLMo2 uses RMSNorm instead of standard layer norm. The RMSNorm is applied to attention queries and keys, and it is applied after the attention and feedforward layers rather than before.
- OLMo2 requires Transformers v4.48 or higher.
- Load specific intermediate checkpoints by adding the `revision` parameter to [`~PreTrainedModel.from_pretrained`].

    ```py
    from transformers import AutoModelForCausalLM

    model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B", revision="stage1-step140000-tokens294B")
    ```

## Olmo2Config

[[autodoc]] Olmo2Config

## Olmo2Model

[[autodoc]] Olmo2Model
    - forward

## Olmo2ForCausalLM

[[autodoc]] Olmo2ForCausalLM
    - forward