mistral3.md 9.3 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
<!--Copyright 2025 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2025-01-30 and added to Hugging Face Transformers on 2025-03-18.*

<div style="float: right;">
    <div class="flex flex-wrap space-x-1">
           <img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&amp;logo=pytorch&amp;logoColor=white">
    </div>
</div>

# Mistral 3

[Mistral 3](https://mistral.ai/news/mistral-small-3) is a latency optimized model with a lot fewer layers to reduce the time per forward pass. This model adds vision understanding and supports long context lengths of up to 128K tokens without compromising performance.

You can find the original Mistral 3 checkpoints under the [Mistral AI](https://huggingface.co/mistralai/models?search=mistral-small-3) organization.

> [!TIP]
> This model was contributed by [cyrilvallez](https://huggingface.co/cyrilvallez) and [yonigozlan](https://huggingface.co/yonigozlan).
> Click on the Mistral3 models in the right sidebar for more examples of how to apply Mistral3 to different tasks.

The example below demonstrates how to generate text for an image with [`Pipeline`] and the [`AutoModel`] class.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline

messages = [
    {"role": "user",
        "content":[
            {"type": "image",
            "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",},
            {"type": "text", "text": "Describe this image."}
        ,]
    ,}
,]

pipeline = pipeline(
    task="image-text-to-text", 
    model="mistralai/Mistral-Small-3.1-24B-Instruct-2503", 
    dtype=torch.bfloat16,
    device=0
)
outputs = pipeline(text=messages, max_new_tokens=50, return_full_text=False)

outputs[0]["generated_text"]
'The image depicts a vibrant and lush garden scene featuring a variety of wildflowers and plants. The central focus is on a large, pinkish-purple flower, likely a Greater Celandine (Chelidonium majus), with a'
```

</hfoption>
<hfoption id="AutoModel">

```py
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
from accelerate import Accelerator 

torch_device = Accelerator().device
model_checkpoint = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
processor = AutoProcessor.from_pretrained(model_checkpoint)
model = AutoModelForImageTextToText.from_pretrained(
    model_checkpoint, 
    device_map=torch_device, 
    dtype=torch.bfloat16
)

messages = [
    {"role": "user",
        "content":[
            {"type": "image",
            "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",},
            {"type": "text", "text": "Describe this image."}
        ,]
    ,}
,]

inputs = processor.apply_chat_template(
    messages, 
    add_generation_prompt=True, 
    tokenize=True, return_dict=True, 
    return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=20)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)

decoded_output
'The image depicts a vibrant and lush garden scene featuring a variety of wildflowers and plants. The central focus is on a large, pinkish-purple flower, likely a Greater Celandine (Chelidonium majus), with a'
```

</hfoption>
</hfoptions>

## Notes

- Mistral 3 supports text-only generation.

```py
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
from accelerate import Accelerator

torch_device = Accelerator().device
model_checkpoint = ".mistralai/Mistral-Small-3.1-24B-Instruct-2503"
processor = AutoProcessor.from_pretrained(model_checkpoint)
model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, dtype=torch.bfloat16)

SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, always end your accurate response with an ASCII drawing of a cat."
user_prompt = "Give me 5 non-formal ways to say 'See you later' in French."

messages = [
    {"role": "system", "content": SYSTEM_PROMPT},
    {"role": "user", "content": user_prompt},
]

text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=text, return_tensors="pt").to(0, dtype=torch.float16)
generate_ids = model.generate(**inputs, max_new_tokens=50, do_sample=False)
decoded_output = processor.batch_decode(generate_ids[:, inputs["input_ids"].shape[1] :], skip_special_tokens=True)[0]

print(decoded_output)
"1. À plus tard!
 2. Salut, à plus!
 3. À toute!
 4. À la prochaine!
 5. Je me casse, à plus!

```

 /\_/\
( o.o )
 > ^ <

```"
````

- Mistral 3 accepts batched image and text inputs.

```py
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
from accelerate import Accelerator

torch_device = Accelerator().device
model_checkpoint = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
processor = AutoProcessor.from_pretrained(model_checkpoint)
model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, dtype=torch.bfloat16)

messages = [
     [
         {
             "role": "user",
             "content": [
                 {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
                 {"type": "text", "text": "Write a haiku for this image"},
             ],
         },
     ],
     [
         {
             "role": "user",
             "content": [
                 {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
                 {"type": "text", "text": "Describe this image"},
             ],
         },
     ],
 ]


 inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

 output = model.generate(**inputs, max_new_tokens=25)

 decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
 decoded_outputs
["Write a haiku for this imageCalm waters reflect\nWhispers of the forest's breath\nPeace on wooden path"
, "Describe this imageThe image depicts a vibrant street scene in what appears to be a Chinatown district. The focal point is a traditional Chinese"]
```

- Mistral 3 also supported batched image and text inputs with a different number of images for each text. The example below quantizes the model with bitsandbytes.

```py
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
from accelerate import Accelerator

torch_device = Accelerator().device
model_checkpoint = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
processor = AutoProcessor.from_pretrained(model_checkpoint)
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModelForImageTextToText.from_pretrained(
     model_checkpoint, quantization_config=quantization_config
 )

messages = [
     [
         {
             "role": "user",
             "content": [
                 {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
                 {"type": "text", "text": "Write a haiku for this image"},
             ],
         },
     ],
     [
         {
             "role": "user",
             "content": [
                 {"type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"},
                 {"type": "image", "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"},
                 {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
             ],
         },
     ],
 ]

 inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

 output = model.generate(**inputs, max_new_tokens=25)

 decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
 decoded_outputs
["Write a haiku for this imageSure, here is a haiku inspired by the image:\n\nCalm lake's wooden path\nSilent forest stands guard\n", "These images depict two different landmarks. Can you identify them? Certainly! The images depict two iconic landmarks:\n\n1. The first image shows the Statue of Liberty in New York City."]
```

## Mistral3Config

[[autodoc]] Mistral3Config

## MistralCommonTokenizer

[[autodoc]] MistralCommonTokenizer

## Mistral3Model

[[autodoc]] Mistral3Model

## Mistral3ForConditionalGeneration

[[autodoc]] Mistral3ForConditionalGeneration
    - forward