llava.md 11 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->
*This model was released on 2023-04-17 and added to Hugging Face Transformers on 2023-12-07.*

# LLaVa

<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>

## Overview

LLaVa is an open-source chatbot trained by fine-tuning LlamA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. In other words, it is an multi-modal version of LLMs fine-tuned for chat / instructions.

The LLaVa model was proposed in [Visual Instruction Tuning](https://huggingface.co/papers/2304.08485) and improved in [Improved Baselines with Visual Instruction Tuning](https://huggingface.co/papers/2310.03744) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.

The abstract from the paper is the following:

*Large multimodal models (LMM) have recently shown encouraging progress with visual instruction tuning. In this note, we show that the fully-connected vision-language cross-modal connector in LLaVA is surprisingly powerful and data-efficient. With simple modifications to LLaVA, namely, using CLIP-ViT-L-336px with an MLP projection and adding academic-task-oriented VQA data with simple response formatting prompts, we establish stronger baselines that achieve state-of-the-art across 11 benchmarks. Our final 13B checkpoint uses merely 1.2M publicly available data, and finishes full training in ∼1 day on a single 8-A100 node. We hope this can make state-of-the-art LMM research more accessible. Code and model will be publicly available*

<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava_architecture.jpg"
alt="drawing" width="600"/>

<small> LLaVa architecture. Taken from the <a href="https://huggingface.co/papers/2304.08485">original paper.</a> </small>

This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ) and [ybelkada](https://huggingface.co/ybelkada).
The original code can be found [here](https://github.com/haotian-liu/LLaVA/tree/main/llava).

## Usage tips

- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating.

- Note the model has not been explicitly trained to process multiple images in the same prompt, although this is technically possible, you may experience inaccurate results.

> [!NOTE]
> LLaVA models after release v4.46 will raise warnings about adding `processor.patch_size = {{patch_size}}`, `processor.num_additional_image_tokens = {{num_additional_image_tokens}}` and `processor.vision_feature_select_strategy = {{vision_feature_select_strategy}}`. It is strongly recommended to add the attributes to the processor if you own the model checkpoint, or open a PR if it is not owned by you.
Adding these attributes means that LLaVA will try to infer the number of image tokens required per image and expand the text with as many `<image>` placeholders as there will be tokens. Usually it is around 500 tokens per image, so make sure that the text is not truncated as otherwise there will be failure when merging the embeddings.
The attributes can be obtained from model config, as `model.config.vision_config.patch_size` or `model.config.vision_feature_select_strategy`. The `num_additional_image_tokens` should be `1` if the vision backbone adds a CLS token or `0` if nothing extra is added to the vision patches.

### Formatting Prompts with Chat Templates  

Each **checkpoint** is trained with a specific prompt format, depending on the underlying large language model backbone. To ensure correct formatting, use the processor's `apply_chat_template` method.  

**Important:**  

- You must construct a conversation history — passing a plain string won't work.  
- Each message should be a dictionary with `"role"` and `"content"` keys.  
- The `"content"` should be a list of dictionaries for different modalities like `"text"` and `"image"`.  

Here's an example of how to structure your input.
We will use [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) and a conversation history of text and image. Each content field has to be a list of dicts, as follows:

```python
from transformers import AutoProcessor

processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")

conversation = [
    {
        "role": "user",
        "content": [
            {"type": "image"},
            {"type": "text", "text": "What’s shown in this image?"},
            ],
    },
    {
        "role": "assistant",
        "content": [{"type": "text", "text": "This image shows a red stop sign."},]
    },
    {

        "role": "user",
        "content": [
            {"type": "text", "text": "Describe the image in more details."},
        ],
    },
]

text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

# Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your images
print(text_prompt)
>>> "USER: <image>\n<What’s shown in this image? ASSISTANT: This image shows a red stop sign.</s>USER: Describe the image in more details. ASSISTANT:"
```

- If you want to construct a chat prompt yourself, below is a list of prompt formats accepted by each llava checkpoint:

[llava-interleave models](https://huggingface.co/collections/llava-hf/llava-interleave-668e19a97da0036aad4a2f19) requires the following format:

```bash
"<|im_start|>user <image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant"
```

For multiple turns conversation:

```bash
"<|im_start|>user <image>\n<prompt1><|im_end|><|im_start|>assistant <answer1><|im_end|><|im_start|>user <image>\n<prompt1><|im_end|><|im_start|>assistant "
```

[llava-1.5 models](https://huggingface.co/collections/llava-hf/llava-15-65f762d5b6941db5c2ba07e0) requires the following format:

```bash
"USER: <image>\n<prompt> ASSISTANT:"
```

For multiple turns conversation:

```bash
"USER: <image>\n<prompt1> ASSISTANT: <answer1></s>USER: <prompt2> ASSISTANT: <answer2></s>USER: <prompt3> ASSISTANT:"
```

🚀 **Bonus:** If you're using `transformers>=4.49.0`, you can also get a vectorized output from `apply_chat_template`. See the **Usage Examples** below for more details on how to use it.

## Usage examples

### Single input inference

```python
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration

# Load the model in half-precision
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf", dtype=torch.float16, device_map="auto")
processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")

conversation = [
    {
        "role": "user",
        "content": [
            {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
            {"type": "text", "text": "What is shown in this image?"},
        ],
    },
]

inputs = processor.apply_chat_template(
    conversation,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt"
).to(model.device, torch.float16)

# Generate
generate_ids = model.generate(**inputs, max_new_tokens=30)
processor.batch_decode(generate_ids, skip_special_tokens=True)
```

### Batched inference

LLaVa also supports batched inference. Here is how you can do it:

```python
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration

# Load the model in half-precision
model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf", dtype=torch.float16, device_map="auto")
processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")


# Prepare a batch of two prompts
conversation_1 = [
    {
        "role": "user",
        "content": [
            {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
            {"type": "text", "text": "What is shown in this image?"},
        ],
    },
]

conversation_2 = [
    {
        "role": "user",
        "content": [
            {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
            {"type": "text", "text": "What is shown in this image?"},
        ],
    },
]

inputs = processor.apply_chat_template(
    [conversation_1, conversation_2],
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    padding=True,
    return_tensors="pt"
).to(model.device, torch.float16)


# Generate
generate_ids = model.generate(**inputs, max_new_tokens=30)
processor.batch_decode(generate_ids, skip_special_tokens=True)
```

## Note regarding reproducing original implementation

In order to match the logits of the [original implementation](https://github.com/haotian-liu/LLaVA/tree/main), one needs to additionally specify `do_pad=True` when instantiating `LlavaImageProcessor`:

```python
from transformers import LlavaImageProcessor

image_processor = LlavaImageProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf", do_pad=True)
```

### Using Flash Attention 2

Flash Attention 2 is an even faster, optimized version of the previous optimization, please refer to the [Flash Attention 2 section of performance docs](https://huggingface.co/docs/transformers/perf_infer_gpu_one).

## Resources

A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BEiT.

<PipelineTag pipeline="image-to-text"/>

- A [Google Colab demo](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing) on how to run Llava on a free-tier Google colab instance leveraging 4-bit inference.
- A [similar notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LLaVa/Inference_with_LLaVa_for_multimodal_generation.ipynb) showcasing batched inference. 🌎

## LlavaConfig

[[autodoc]] LlavaConfig

## LlavaImageProcessor

[[autodoc]] LlavaImageProcessor
    - preprocess

## LlavaImageProcessorFast

[[autodoc]] LlavaImageProcessorFast
    - preprocess

## LlavaProcessor

[[autodoc]] LlavaProcessor

## LlavaModel

[[autodoc]] LlavaModel

## LlavaForConditionalGeneration

[[autodoc]] LlavaForConditionalGeneration
    - forward